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Abstract 

Traditional marketing models are swiftly being upended by the advent of online 

social networks. Yet, practicing firms that are engaging with online social networks 

neither have a reliable theory nor sufficient practical experience to make sense of the 

phenomenon. Extant theory in particular is based on observations of the real world, and 

may thus not apply to online social networks. Practicing firms may consequently be 

misallocating a large amount of resources, simply because they do not know how the 

online social networks with which they interact are organized.  

The purpose of this dissertation is to investigate how online social networks that 

are in stark contrast to real-world social networks behave and how they get organized. 

In particular, I explore how network structure and information flow within the network 

impact each other, and how they affect the phenomenon of influence in online social 

networks. I have collected retrospective data from Twitter conversations about six 

YouTube product categories (Music, Entertainment, Comedy, Science, Howto and 

Sports) in continuous time for a period of three months. Measures of network structure 

(Scale Free Metric, Assortativity and Small World Metric), network flows (Total Paths, 

Total Shortest Paths, Graph Diameter, Average Path Length, and Average Geodesic 

Length) and influence (Eigenvector Centrality/Centralization) were computed from the 

data. Experimental measures such as power law distributions of paths, shortest paths 

and nodal eigenvector centrality were introduced to account for node-level structure. 
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Factor analysis and regression analysis were used to analyze the data and generate 

results. 

The research conducted in this dissertation has yielded three significant findings.  

1. Network structure impacts network information flow, and conversely; network flow 

and network structure impact the network phenomenon of influence. However, the 

impact of network structure and network flow on influence could not be identified 

in all instances, suggesting that it cannot be taken for granted.   

2. The nature of influence within a social network cannot be understood just by 

analyzing undirected or directed networks. The behavioral traits of individuals within 

the network can be deduced by analyzing how information is propagated 

throughout the network and how it is consumed.  

3. An increase or decrease in the scale of a network leads to the observation of 

different organizational processes, which are most likely driven by very different 

social phenomena. Social theories that were developed from observing real-world 

networks of a relatively small scale (hundreds or thousands of people) consequently 

do not necessarily apply to online social networks, which can exhibit significantly 

larger scale (tens of thousands or millions of people). 

The primary contribution of this dissertation is an enhanced understanding of how 

online social networks, which exhibit contrasting characteristics to social networks that 

have been observed in the real world, behave and how they get organized. The 

empirical findings of this dissertation may allow practicing managers that engage with 

online social networks to allocate resources more effectively, especially in marketing. 

The primary limitations of this research are the inability to identify the causes of change 
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within networks, glean demographic information and generalize across contexts. These 

limitations can all be overcome by follow-on studies of networks that operate in 

different contexts. In particular, further study of a variety of online social networks that 

operate on different social networking platforms would determine the extent to which 

the findings of this dissertation are generalizable to other online social networks. 

Conclusions drawn from an aggregation of these studies could serve as the foundation 

of a more broadly-based theory of online social networks.  
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1. Introduction 

1.1 Research Problem  

1.1.1 Online Social Networks 

Online social networks are aggregations that emerge from the Internet when 

people carry on public discussions (Preece, 2000, Rheingold, 1993, Schoberth and 

Schrott, 2001). They have enabled organizations to leverage the network value of 

business ecosystems (Afsarmanesh and Camarinha-Matos, 2005) in activities such as 

marketing, customer service and product innovation (Bressler and Grantham, 2000). 

Online social networks are at the core of many successful business models, and they are 

used to coordinate business and information exchanges (Feller et al., 2008).  

People all around the world are utilizing online social networks at an astonishing 

rate. It is estimated that there will be around 2.13 billion social network users around 

the globe in 2016, up from 1.4 billion in 20121. Due to their rapidly growing popularity, 

online social networks are having a major and growing impact on consumer behavior. A 

study conducted by Interactive Advertising Bureau (IAB) and Pricewaterhouse Coopers 

US (PwC US) concludes that, “Consumers are turning to interactive media in droves to 

look for the latest information, to connect with their social networks, and simply to be 

                                                           
1
 http://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/. Accessed on 

5/13/2015 

http://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
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entertained.”2 Many of the online conversations concern products and services 

(Chakrabarti and Berthon, 2012), implying that the commercial impact of online social 

networks can no longer be ignored.  

Marketers not only need to pay attention to these conversations (Chakrabarti 

and Berthon, 2012); they must also try to become a part of these conversations, in order 

to shape them. When the conversations are positive, they can lead to free advertising 

and better brand recognition (Longart, 2010). However, when the conversations are 

negative, they can do irreparable financial damage (Ayres, 2009, Khammash and 

Griffiths, 2011). Online conversations can therefore make or break a product or a 

service.  

Today’s marketers are responding to the increasing importance of online social 

networks by spending billions of dollars in digital marketing.  According to Proctor and 

Gamble’s chief executive A. G. Lafley, “ … digital spending on things like online ads and 

social media ranges from 25% to 35% of the company’s marketing budget and is 

currently near the top of that range in the U.S., its biggest market.” 3 If these 

investments in online ads and social media do not yield demonstrable improvements in 

sales, then large sums of money will have been misallocated.  The stakes in marketing 

via online social networks could therefore not be higher. 

                                                           
2
 Randall Rothenberg, President and CEO, IAB1; 

http://www.iab.net/about_the_iab/recent_press_releases/press_release_archive/press_release/pr-
060313 . Accessed on 04/01/2014 
3
 http://online.wsj.com/article/SB10001424127887323681904578641993173406444.html   Accessed on 

04/01/2014  

http://www.iab.net/about_the_iab/recent_press_releases/press_release_archive/press_release/pr-060313
http://www.iab.net/about_the_iab/recent_press_releases/press_release_archive/press_release/pr-060313
http://online.wsj.com/article/SB10001424127887323681904578641993173406444.html
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1.1.2 Social Network Analytics 

Many companies are reallocating their marketing resources to specifically target 

users of Facebook and Twitter, 4 two of the most popular social networking platforms of 

the mid-2010s, where the majority of online conversations about products and services 

take place. 5  Yet even on Facebook and Twitter, companies tend to use traditional 

approaches to marketing, which rely on broadcasting information that is passively 

consumed. 6 However, advertising via social media requires users of online social 

networks to deliberately spread the information they receive through word of mouth 

(Hodas and Lerman, 2014), an approach that is demonstrably more efficient and 

effective than broadcasting information.7  It is thus not surprising that traditional 

methods of marketing on the Internet have produced disappointing outcomes in online 

social networks (Edward, 2012, Rusli and Eavis, 2012, Terlep et al., 2012). This implies 

that traditional Internet marketing paradigms and processes are being upended by 

                                                           
4
 http://adage.com/article/digital/ad-age-reader-survey-twitter-facebook-youtube/293923/ Accessed on 

05/13/2015 
5
 http://www.sas.com/resources/whitepaper/wp_23348.pdf Accessed on 05/13/2015 

 
6
 http://www.theguardian.com/technology/2013/aug/12/engage-dont-broadcast-the-need-for-

authenticity-in-social-media Accessed on 05/13/2015 
7
 The Nielsen agency conducted a global survey of trust in advertising, in which it polled more than 29,000 

Internet respondents in 58 countries to measure consumer sentiment on 19 forms of paid, earned and 
owned advertising formats. Not surprisingly, this study concluded that word-of-mouth formats, such as 
recommendations from family and friends and consumer opinions posted online, prompted the highest 
levels of self-reported action among 84 percent and 70 percent of respondents, respectively. 
http://www.nielsen.com/us/en/press-room/2013/nielsen--earned-advertising-remains-most-credible-
among-consumer.html Accessed on 04/01/2014 

http://adage.com/article/digital/ad-age-reader-survey-twitter-facebook-youtube/293923/
http://www.sas.com/resources/whitepaper/wp_23348.pdf
http://www.theguardian.com/technology/2013/aug/12/engage-dont-broadcast-the-need-for-authenticity-in-social-media
http://www.theguardian.com/technology/2013/aug/12/engage-dont-broadcast-the-need-for-authenticity-in-social-media
http://www.nielsen.com/us/en/press-room/2013/nielsen--earned-advertising-remains-most-credible-among-consumer.html
http://www.nielsen.com/us/en/press-room/2013/nielsen--earned-advertising-remains-most-credible-among-consumer.html
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swiftly evolving social platforms and technology (Deighton, 2012), and that billions of 

dollars in marketing resources have been misallocated. 8   

With increased spending on social media, businesses are feeling the pressure to 

gain new insights into customer behavior. They need to know who the online 

influencers are and how they exert their influence (Lindsay et al.,2014). 9(Lindsay et 

al.)They require analytics to transform enormous volumes of data into actionable 

strategies (Halavais, 2015). According to a report by the research firm Gartner, 

companies spent a total of $76 million on social media analytics in 2011. This number is 

expected to increase by almost $1 billion every year to reach over $4 billion by 2016.10  

Success in marketing though online social media critically depends upon 

understanding the virtual community that may have a potential interest in your product 

or service and by identifying the key influencers that will spread your marketing 

message (Lindsay et al.,2014). However, due to the fluid nature of social media, this is 

easier said than done. As Jure Klepic, social media innovator, states in Huffington Post: 

“A topic may be trending one day, someone may be popular the next or themes may 

                                                           
8
 http://www.businessinsider.com/priceline-ceo-facebook-and-twitter-are-useless-for-ads-2014-4 

Accessed on 05/13/2015 
9
 http://www.forbes.com/sites/kylewong/2014/09/10/the-explosive-growth-of-influencer-marketing-

and-what-it-means-for-you/ Accessed on 05/13/2015 
 
10

 http://www.forbes.com/sites/louiscolumbus/2012/10/15/using-search-analytics-to-see-into-gartners-

232b-big-data-forecast/ Accessed on 04/01/2014 

http://www.businessinsider.com/priceline-ceo-facebook-and-twitter-are-useless-for-ads-2014-4
http://www.forbes.com/sites/kylewong/2014/09/10/the-explosive-growth-of-influencer-marketing-and-what-it-means-for-you/
http://www.forbes.com/sites/kylewong/2014/09/10/the-explosive-growth-of-influencer-marketing-and-what-it-means-for-you/
http://www.forbes.com/sites/louiscolumbus/2012/10/15/using-search-analytics-to-see-into-gartners-232b-big-data-forecast/
http://www.forbes.com/sites/louiscolumbus/2012/10/15/using-search-analytics-to-see-into-gartners-232b-big-data-forecast/
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change almost hourly. By the time a marketer develops a response, the social universe 

has moved on.” 11  

Many firms that engage in social media analytics (e.g., Klout, Kred, PeerIndex, 

and Traackr) have tried to overcome these challenges by finding the individuals that 

have the most friends and followers or generate the most output. 12  This approach has 

not been particularly successful (Cha et al., 2010).  Evidently, those who have the most 

connections or generate the most activity online are not the true influencers in social 

media (Cha et al., 2010, Wu et al., 2011), and whatever influence they have is 

ephemeral (Wu et al., 2011, Romero et al., 2011). Instead, people appear to consume 

information from people they know and from people they trust,13 just as they do in the 

real world (Rogers, 2003). 

1.1.3 Network Flows, Network Structure and Network Phenomena  

Many of the approaches that practitioners of social network analytics have 

deployed are grounded in theory that was developed almost entirely from observing 

social networks in the real world (e.g., (Bailey, 1990, Luhmann, 1986, Miller, 1978, 

Parson, 1951). For example, practitioners track the deliberate propagation of 

information, through word of mouth, from one user to another (Granovetter, 1973, 

                                                           
11

 http://www.huffingtonpost.com/jure-klepic/discover-the-next-advance_b_3991536.html Accessed on 

04/01/2014 
12

 http://blog.crazyegg.com/2013/06/04/dont-like-klout/ Accessed on 05/13/2015 
13

 http://www.nielsen.com/us/en/press-room/2013/nielsen--earned-advertising-remains-most-credible-
among-consumer.html Accessed on 04/01/2014 

http://www.huffingtonpost.com/jure-klepic/discover-the-next-advance_b_3991536.html
http://blog.crazyegg.com/2013/06/04/dont-like-klout/
http://www.nielsen.com/us/en/press-room/2013/nielsen--earned-advertising-remains-most-credible-among-consumer.html
http://www.nielsen.com/us/en/press-room/2013/nielsen--earned-advertising-remains-most-credible-among-consumer.html
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Tichy et al., 1979, Rogers, 2003). This method of information transfer is henceforth 

referred to as network flows in this dissertation. 

Social scientists have long understood the importance of network flows in 

spreading information (Granovetter, 1973) and in diffusion of innovations (Rogers, 

2003) in real-world social networks. All network flows in the real world take place 

between the seeker of information and the source of information, and all network flows 

transpire within existing social relationships (Bristor, 1989, Duhan et al., 1997, Money et 

al., 1998). Individuals in a strong relationship tend to interact more frequently and 

exchange more information, compared to those in a weak relationship (Brown and 

Reingen, 1987).  

In real-world social networks, interactions only happen between people who 

have social relationships (Burt, 1987). Thus an individual’s relationship network and 

his/her interaction network are considered to be one and the same (Burt, 1987). 

Therefore, the structure of an individual’s relationship network or the structure of 

his/her interaction network is henceforth defined as network structure in this 

dissertation.  

In extant theory on social networks, network structure defines the boundaries of 

communities (Bailey, 1990, Luhmann, 1986, Miller, 1978, Parson, 1951).  For example, in 

living systems theory (Miller, 1978), a system is defined as a set of interacting units and 

the relationships among them. The boundaries of these interacting units are determined 
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by the processes through which these units get organized. These units are organized 

hierarchically. For example, two or more people and their relationships comprise a 

group; communities consist of two or more groups and two or more communities 

comprise a society. There are comparatively few barriers to information transfer within 

units than there are between the units. Therefore, the boundaries between units (e.g., 

groups, communities, societies) constrain network flows between the units.  

Within communities, network structure guides the network flows (Bailey, 1990, 

Luhmann, 1986, Parson, 1951) and network flows give rise to network phenomena such 

as social influence (Cartwright, 1965, March, 1955, Simon, 1957), social capital 

(Bourdieu, 1986, Burt, 1992, Burt, 2005, Coleman, 1988, Putnam, 1995), social behavior 

(Allen, 1977, Burt, 1976, Granovetter, 1973) and economic benefit (Allen, 1977, 

Bourdieu, 1986, Burt, 1976, Burt, 1992, Cartwright, 1965, Coleman, 1988, Granovetter, 

1973). The network phenomenon of interest in this thesis is social influence. Henceforth, 

any reference to social phenomena or network phenomena implies social influence, 

unless specifically stated otherwise.  

Social influence in real-world networks occurs when an actor adapts his/her 

behavior to the behavior of other actors in the community (March, 1955, Simon, 1957, 

Cartwright, 1965). A precondition for social influence is the availability of information, 

through network flows, about the other actors (Leenders, 1995). The scope of the 

network flows within all real-world networks is constrained by factors such as 

connectivity (the number of actors to which an individual is connected) (Allen, 1977, 
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Burt, 1976, Burt, 1992, Granovetter, 1973) and physical distance between the actors in 

the network (Allen, 1977). Therefore, an individual influence in a real world network 

depends upon the individual’s connectivity, his/her access to an individual with high 

connectivity or a combination of both.  

1.1.4 Social Networks: Real-World versus Online 

Online social networks differ from real world social networks in a variety of ways. 

First and foremost, online social networks tend to be larger than the social networks 

that have been studied in the real world. Known real-world social networks tend to 

consist of hundreds or thousands of people (e.g., Granovetter, 1973, Tichy et al., 1979, 

Burt, 1987, Rogers, 2003); online network may contain hundreds of thousands or 

millions (Mislove et al., 2007, Dodds et al., 2011, Moon et al., 2011). Networks of such 

different scale could thus behave differently; some social processes may transpire in 

very large but not in comparatively small processes, and conversely. Social theories that 

were developed from observing real-world networks may thus not necessarily apply to 

online social networks.  

Secondly, the ability to conduct searches in online social networks (Watts et al., 

2002, Adamic and Adar, 2005) makes the network structure and the network flows, 

which result from the interaction that follows that search, highly dynamic (Dodds et al., 

2003). Real world constraints such as connectedness and distance may consequently 
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not have any significant impact on the behavior online social networks (Borgatti and 

Cross, 2003, Borgatti, 2005). Instead, the online social networks may be most affected 

by topological organization of network structure (e.g., “scale free” (Barabási and Albert, 

1999), “assortativity” (Newman, 2002) and “small world” (Watts and Strogatz, 1998)) or 

by various attributes of network flows (e.g., paths, geodesics) (Borgatti, 2005), which 

extant theory of social networks does not really consider (Borgatti and Cross, 2003) and 

prior empirical studies have not explored.14   

As a consequence, network flows in online social networks cannot all be 

attributed to social relationships (Pei et al., 2014). We do know from observation of 

practicing firms (Wiertz et al., 2010) that online social networks are an emergent 

phenomenon (in the sense of (Sandelands and Drazin, 1989, Drazin and Sandelands, 

1992)), and that network flows can be generated by ad hoc interactions. For example, 

the DARPA Network Challenge successfully tested the ability of online social networks to 

mobilize massive ad hoc teams to solve problems (Greenemeier, 2009), suggesting that 

an individual’s online social network and his/her online interaction network are not one 

and the same thing. We also know from observing hashtag communities that people in 

online social networks may interact virtually with people with whom they share a 

common interest. The observation of hashtag communities also tells us that online 

social networks and network flows can be ephemeral (Weng et al., 2012). They can 

                                                           
14

 Neither do studies of phenomena that are somewhat related to social networks, such as business 
ecosystems (Iansiti & Levien, 2004; Adner, 2006; Moore, 2006) or open source software development 
(von Hippel, E. & von Krogh, G., 2003; Shah, 2005; West and Lakhani, 2008). 
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disappear on short notice, as the common interest of the community dissipates (Weng 

et al., 2012).  

The above observations suggest that bonding between people in online social 

networks may be very different from what it is in the real world. In the real world, social 

relationships are required for a social network to form and function. This is not 

necessarily true in the virtual world. As a consequence, conversations may be more 

structured in the real world than they are online. Theories of social networks that 

assume strong bonds cause or enable network phenomena may therefore not apply to 

online social networks.  

Table 1:  Real-World versus Online Networks 

 

1.1.5 Toward a Theory of (Online) Social Networks  

Table 1 summarizes the attributes of scientifically observed real-world social 

networks and contrasts them with attributes that have been observed in online social 

Real World Networks Online Networks

Limited scale (e.g., 3 to 1000 members) Unlimited scale (up to millions of members)  

Non-emergent (Static network 

structure) (Burt, 1987, Moffitt, 2001)

Emergent (Dynamic network structure) 

(Centola, 2010, Chomutare et al., 2014, 

Sasidharan et al., 2011, Wiertz et al., 2010) 

Networks flows transpire within social 

relationships. (Bristor, 1989, Duhan et 

al., 1997, Money et al., 1998) 

Networks flows do not need social 

relationships. (Watts et al., 2002, Adamic and 

Adar, 2005, Pei et al., 2014) 

Connected network and interactive 

network are the same. (Bristor, 1989, 

Duhan et al., 1997, Money et al., 1998, 

Brown and Reingen, 1987) 

Connected network and interactive network 

differ significantly. (Dodds et al., 2003, Wilson 

et al., 2012)
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networks. Table 1 clearly illustrates what has been stated above—extant theory, which 

is based upon observation of the real world, cannot be relied upon to explain the nature 

and behavior of online social networks effectively. The observed differences between 

online and real-world social networks are simply too vast.  Even a comprehensive theory 

of online social networks is difficult to frame, because the degree to which many of the 

abovementioned attributes of online social networks occur may be platform specific or 

network specific.  Such a theory would have to be platform independent, scalable and 

take directionality of network flows into consideration.  An overarching theory of social 

networks that covers real-world and online social networks is even more difficult to 

build.  It would have to explain how all social networks, real-world or online, behave.   

It goes beyond the scope of this dissertation to develop an empirically grounded 

theoretical framework for all social networks or even all online networks. However, this 

dissertation can make a significant contribution to theory by empirically investigating 

online social networks that exhibit the greatest contrast to real-world social networks, 

which are relatively well understood. Follow-on studies (perhaps conducted by other 

researchers) can subsequently investigate other social networks, which exhibit less of a 

contrast with those that occur in the real world. A comprehensive, empirically grounded 

theory of social networks—real-world and online—could potentially be developed once 

all these empirical studies have been performed.  

Online social networks that are in stark contrast to those that have been 

observed in the real world would have to exhibit the following characteristics. They 
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would have to be very large, emergent, dynamic and potentially ephemeral. They would 

have to contain network flows that do not rely on social relationships. Characteristics 

that are associated with network structure, such as “scalefreeness,” “assortativity” and 

“smallworldness” would have to be demonstrably observable, and the phenomenon of 

influence would have to be readily identifiable. Furthermore, the existence of 

relationships between network flows, network structure and network phenomenon 

would have to be demonstrated as a prerequisite to gaining an understanding of how 

these networks get organized.  

Due to the emergent and dynamic nature of online social networks, the 

relationship between network structure, network flows and the resulting network 

phenomenon in these networks is not very well understood. Recent research on 

network structure (Centola, 2010, Chomutare et al., 2014, Sasidharan et al., 2011), 

network flow (Hodas and Lerman, 2014, Burt et al., 2013, Aral and Walker, 2011, 

Dellarocas et al., 2013) and network phenomena (Aral and Walker, 2012, Pei et al., 

2014, Khammash and Griffiths, 2011, Muchnik et al., 2013a, Muchnik et al., 2013b) 

focuses on these individual categories.  However, studies that characterize the 

mechanisms through which network structure, network flow and the network 

phenomenon collectively emerge and operate are woefully lacking (Aral et al., 2013). 

We cannot even identify the loci of influence within an online social network reliably. 

Thus we are unable to explain how and why online social networks respond to a 

marketing message. To date, we do not know how online social networks form, how 
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they get organized and how they evolve. As practitioners concede (Li and Bernoff, 

2008), firms that are considering engaging in online social networks have neither a 

reliable theory nor sufficient practical experience to manage these networks effectively. 

Even companies that are very adroit at marketing via online social networks have 

experienced unintended consequences when they attempted to direct and control 

social networks (Wiertz et al., 2010). Using online social networks deliberately to gain 

competitive advantage may consequently turn out to be challenging. Nonetheless, the 

social and economic impact of online social networks on the modern world is increasing 

rapidly.  The case for further academic study of the nature of online social networks is 

therefore compelling and urgent.   

1.2 Purpose, Scope and Setting of Dissertation Research  

The purpose of this dissertation is to investigate how online social networks that 

are in stark contrast to real-world social networks behave and how they get organized. 

To achieve this purpose, I conduct an exploratory empirical study that investigates how 

network structure and network flows in these networks impact each other and how 

they impact the network phenomenon of influence in the aggregate.  Therefore, 

inferences about individual influencers cannot be drawn. The essential management 

question being addressed in this research is: “How does the relationship between 

network structure, network flows and the network phenomenon of influence affect the 

course of action that marketers should take when they engage with an online social 
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network?” This dissertation will consequently not investigate other network phenomena 

such as governance, social capital, task complexities and interdependencies.     

Twitter conversations constitute an ideal setting for this study because they 

exhibit the abovementioned characteristics of online social networks that contrast 

sharply with social networks that occur in the real world.  Many of the lessons learned 

from these conversations may, however, be applicable to other social networking 

platforms, as well as to the real world itself. Furthermore, it is important for marketers 

to understand network structure, network flows and the impact that network flows and 

network structure have on the network phenomenon (influence) in a Twitter network.  

The results of the study proposed in this dissertation could consequently allow 

companies to optimize their marketing resources on Twitter.  However, future further 

studies of network flows, network structure and network phenomena on other 

platforms could potentially verify that the findings of this dissertation are generalizable 

to other platforms.  

1.3 Dissertation Outline   

This dissertation consists of an introduction, a literature review that leads to a 

conceptual framework, a set of testable hypotheses, a discussion of research methods, a 

chapter that presents the results of the proposed study, and a chapter that draws 

conclusions from these results. The final chapter reviews the study’s contributions and 
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limitations. It also discusses theoretical and practical implications of the study and 

makes suggestions for further research.   

1.3.1 Chapter 1 – Introduction 

Chapter 1 familiarizes the reader with the dissertation topic.  The first section 

describes the research problem; the second introduces the purpose and scope of this 

dissertation.  Both sections argue that the study which this dissertation proposes should 

be performed. The third section presents an outline of the dissertation.  

1.3.2 Chapter 2 – Literature Search 

Chapter 2 reviews the literature that pertains to the research that is proposed in 

this dissertation. The first section summarizes the literature on network structure. It 

discusses previous attempts to explain holistic models of society. The second section 

presents prior insights into how information flows within a social network and into how 

these ‘network flows’ lead to a variety of observable phenomena within the social 

network. The third section bridges the gap between the literature on network structure 

and the literature on network flows. It also identifies the primary gap that this 

dissertation intends to address. Sections four and five respectively discuss the 

characteristics of network structure and network flows. Section six, brings forth the 

literature regarding the phenomenon of influence in a social network and how this 

influence is measured. Finally, section seven summarizes the research gaps that have 
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been identified in the literature review, and the research questions that have been 

formulated based on the research gaps.  

1.3.3 Chapter 3 – Research Framework, Scope and Hypothesis 

Chapter 3 proposes a novel research framework that intends to overcome the 

shortcomings of extant theory. This research framework determines the scope of this 

dissertation.  Chapter 3 subsequently identifies research hypotheses, which are based 

on the proposed theoretical framework. These hypotheses focus on the degree to which 

social network structure and information flow impact the network phenomenon of 

influence and each other.   

1.3.4 Chapter 4 – Research Methods  

Chapter 4 describes the research methods that will be used in my dissertation. 

This description includes discussions of the unit of analysis; the setting of the study; 

variables and measures; data collection; validity and reliability; and the data analyses 

that have been deployed in the study. 

1.3.5 Chapter 5 – Analysis and Results 

Chapter 5 of my dissertation details the results of the proposed study, as well as 

all statistical analyses.  
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1.3.6 Chapter 6 – Conclusions and Discussion 

Chapter 6 draws conclusions from the results presented in chapter 5.  

1.3.7 Chapter 7 – Contributions and Limitations 

The final chapter identifies some of the study’s limitations. It also reviews the 

study’s contributions, discusses theoretical and practical implications of the study and 

makes suggestions for further research.   
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2. Literature Review 

The management question that motivates this dissertation is: “How does the 

relationship between network structure, network flows and the network phenomenon 

of influence affect the course of action that marketers should take when they engage 

with an online social network?” As noted earlier, this dissertation covers network 

structure, network flows and network phenomenon of influence within social networks. 

A social network will be viewed from a graph theoretic point of view in terms of nodes 

and ties. A node represents an actor within a network and a tie represents a relationship 

between actors. 

In the review of the academic literature that follows, I look at the prior research 

that has been done, and based on this prior research I identify gaps in knowledge that 

warrant further scientific study.  From these gaps, I shall generate research questions 

for my dissertation.  The major contributions of this dissertation will close the gaps in 

knowledge that I identify in this chapter, and address the research questions that they 

generate.   

The following issues, which are addressed in section 2.1 and 2.2, are of particular 

interest to practicing technology managers:   

1. What is the role of network structure and network flow in topological 

organization of a social network? (Section 2.1)  
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2. What role does network flow play in a social phenomenon within a social 

network? (Section 2.2) 

My focus on network structure and network flows within a social network raises 

the following issues, which are addressed in sections 2.3, 2.4, 2.5 and 2.6: 

3. How do network structures and network flows come together in a social 

network? (Section 2.3) 

4. How do network constraints shape social theories? (Section 2.3) 

5. How do online and real world social networks differ? (Section 2.4) 

6. What types of structures can networks form? (Section 2.5) 

7. What are the characteristics of network flows? (Section 2.6) 

My proposed research also raises some broadly based issues pertaining to the 

phenomenon of influence within a network, which is addressed in sections 2.7: 

8. How is the phenomenon of influence within a social network defined and 

measured?  (Section 2.7) 

In the following sections, I discuss each of the abovementioned issues one by 

one, and I identify the literature stream in which these issues have been discussed.  

2.1 Topological Organization of Social Network 

To understand the topological organization of social networks, I look at theories 

that take a broad, integrated view of social networks. These theories attempt to explain 

the topological organization of social systems by using analogies from the biological 
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sciences, the physical sciences and systems science. They cover social phenomena 

pertaining to network structure (groups, societies, organizations, countries, etc...) and 

network flows (processes like communication, collaboration, reproduction, 

coordination, control, etc...), as well as the constraints that impact network structure 

and network flows (geographic distance/boundaries, land availability, etc...).  They also 

attempt to build a unified theory of social systems that encompasses all the social 

phenomena that can be observed in a real world network. 

An overview of the theories to be reviewed in this section is exhibited in Table 2. 

 

The intent of this review is not to compare, contrast or assess the impact of 

these theories. Instead, I summarize these theories briefly, and I subsequently engage in 

a discussion that brings out their underlying commonalities. From these I develop a 

conceptual model that encompasses them all.       

Table 2: Theories of Social Organization--Literature Overview 
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2.1.1 The Theory of Social Systems (Parson, 1951) 

The theory of social systems was initially proposed by Talcott Parson in 1951. 

The author advocated a functionalist approach and hypothesized that all social systems 

perform the following basic functions: 

1. Adaptation: acquiring sufficient resources 

2. Goal Attainment: setting and achieving goals 

3. Integration: maintaining coordination amongst sub-systems   

4. Latency: creating, preserving and propagating systems distinct culture and 

values. 

Parsons states that a social system comprises one of the three aspects of 

structuring a completely concrete system of social action (Parson, 1951). The other two 

are the “personality system” of the individual actors and the “cultural system,” which is 

built into the individuals’ actions (Parson, 1951). According to Parsons “a social system 

consists in a plurality of individual actors interacting with each other in a situation which 

has at least a physical or environmental aspect, actors who are motivated in terms of a 

tendency to the ‘optimization of gratification’ and whose relation to their situations, 

including each other, is defined and mediated in terms of a system of culturally 

structured and shared symbols” (Parson, 1951). He defines cultural systems as 

“symbolic element of the cultural tradition, ideas or beliefs, expressive symbols or value 

patterns so far as they are treated as situational objects by ego and are not 

‘internalized’ as a constitutive elements of the structure of his personality” (Parson, 
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1951). These signs and symbol acquire a common meaning and serve as media of 

communication between actors. In order to define personality systems, Parsons states 

that ‘action’ is a process in an actor-situation system that has motivational significance 

to the individual actor because orientation of the action has a bearing on the attainment 

of gratification. The orientation of the action depends on the actor’s personality 

structures, which are a function of the relation of the actor to his situation and the 

history of that relation (Parson, 1951). Parsons emphasizes that it is not theoretically 

possible to reduce any of the systems to a combination of other two. The fundamental 

building blocks of the theory of social systems, personality systems, and cultural systems 

are the same but the ways in which the conceptual material is built into theoretical 

structures are not the same.  

Parsons approach of “structural functionalism” has been highly influential among 

sociologist trying to understand the shift from preindustrial societies to industrial 

societies, in particular complex relationships between different parts of society and the 

impact of social institution on individual behavior (Robertson, 1992). However, Parson’s 

work was criticized for the absence of conflict and dysfunction (Mills, 2000, Gouldner), 

(Wrong, 1961).  Despite these perceived flaws, Parson’s theories of structural 

functionalism were credited with providing stimulus to the field of sociology (Turner, 

1985, Merton, 1973).  

In the theory of social systems, individuals do not act as the fundamental units of 

society. Instead, society is based the actions out of which personality systems and 
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cultural systems are built. Therefore, the theory of social systems does not treat the 

personality systems and the cultural systems independently. Instead, it is concerned 

with how these components of the social system affect the overall structure of the 

social system and how it functions.  The theory analyzes social processes in relation to 

the structure of social systems and their variability. It describes the mechanisms of 

socialization, patterns of orientation in social roles, tendencies toward deviant behavior 

and mechanisms of social control. 

2.1.2 Autopoietic Theory (Luhmann, 1986) 

Autopoietic theory has its origins in biological systems (Maturana and Varela, 

1980). In this theory, Maturana and Varela define living systems as systems that use 

self-reference to reproduce. Every unit of offspring possesses a copy of its parents’ 

genes. Throughout the interactions and transformations that the offspring encounter in 

their lifetimes, they continuously regenerate the network processes that have produced 

them. As a consequence, they retain a structure, which is similar to that of their parents, 

and they perform functions, which are similar to those that their parents performed.   

Niklas Luhman extended autopoietic theory to social systems and suggested that 

social systems use communication as their mechanism for autopoietic reproduction 

(Luhmann, 1986). Communications are not living units; they are not conscious units; and 

they are not actions. A unit of communication consists of a synthesis of three 

components: information, utterance and understanding (including misunderstanding). 
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In essence, every actor within the social system has to make three choices: 1) whether 

to accept or reject information; 2) understand (or perhaps misunderstand) the 

information; and 3) and propagate it to other actors. The synthesis that results in 

communication is produced by the network in which the communication takes place; it 

is not derived from some kind of inherent power of consciousness or from the inherent 

quality of the information. In addition, the synthesis of information, utterance and 

understanding cannot be preprogrammed by language. It has to be recreated from 

situation to situation by referring to previous communications and to the possibility of 

further communications. In every situation, communication is restricted by the actual 

event, requiring self-reference. Furthermore, information, utterance and understanding 

cannot reside independently in a system; they are inherently co-created.   

Autopoietic theory is based upon the following properties of communication:  

 Communication is atomic. The elementary, indecomposable units of the system 

are communications of minimal size. However, this minimal size is context 

specific—it cannot be determined independently of the system.  

 An elementary unit of communication has a minimal meaning, which still can be 

negated. This minimal meaning is necessary for reference in further 

communication.   

 The social system also includes further communication or the prospect of further 

communication. Further communication can very well separate pieces of 

information, utterances and understandings and discuss them separately, but 

this still would presuppose their synthesis in previous communication.  
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 Communication includes understanding as a necessary part of the unity of its 

operation. It does not include the acceptance of its content. It is not the function 

of communication to produce a consensus as the favored state of mind.  

 Communication always results in an open situation of either acceptance or 

rejection. It reproduces situations with a specified and enforced choice. Such 

situations are not possible without communication; they do not occur as natural 

happenings. Only communication itself is able to reach a point at which the 

meaning of the communication is either accepted or rejected. This bifurcation 

results in a reduction of complexity and, by this very fact, an enforcement of 

selection. Automatically, the selection of further communication is either an 

acceptance or rejection of previous communication or a visible avoidance or an 

adjournment of the issue.  

 Whatever its content and intention, communication reacts within the framework 

of enforced choice. To take one course is not to take the other. This highly 

artificial condition structures the self-reference of the system; it makes it 

unavoidable to take other communications of the same system into account, and 

every communication renews the same condition within a varied context.  

If a social system were set up to produce consensus, it would soon come to an 

end. It would never produce and reproduce to form a society. In fact, however, social 

systems are designed to reproduce themselves by submitting themselves to self-

reproduced selectivity. Only this arrangement makes the evolution of social systems 

possible.  

Autopoietic theory has been further reviewed by many researchers in the field of 

organizational theory (Mingers, 2003) and information systems (e.g., Baca. et. al., 2010, 

Malekovic and Schatten, 2008). For example, Mingers (2003), who evaluated Luhmann’s 
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theory from an organizational perspective states: “Social systems are networks of 

communication that produce further communication and only communication” 

(Mingers, 2003), pp. 104-105). Therefore, they are autopoietic. In addition, information 

systems are a critical subsystem of both social systems and organizations (Brumec, 

1997), which raises the issue whether information systems autopoietic as well (Bača et 

al., 2007; Maleković and Schatten, 2008). Information systems can be viewed as a set of 

relations between communicative events that reproduce new communicative events 

based on previous (stored) communication. The organization of such systems consists of 

the relations between communicative events described through their semantics 

(meaning) and the means that are used to produce communication (Maleković and 

Schatten). According to Baca et al.(2007), Autopoiesis in the context of information 

systems denotes the ability of an information system to continuously adapt to the needs 

of its current users and also to keep all the characteristics that make it unique and 

recognizable as an information system (Bača et al., 2007). This tends to be an attribute 

of organizational and social systems. 

2.1.3 Living Systems Theory (Miller, 1978) 

Living systems theory is a general theory about how living systems work. It deals 

with the notion of emergence and interaction. A system is defined as a set of interacting 

units and the relationships among them. Miller’s model of living systems constitutes a 

hierarchy that consists of the following eight levels: 
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• Cells: the basic building block of life  

• Organs: the principle components are cells, organized in simple, multi-cellular 

systems.  

• Organisms: there are three kinds of organisms: fungi, plants and animals. Each has 

distinctive cells, tissues and body plans and carries out life processes differently.  

• Groups: these contain two or more organisms and their relationships.  

• Organizations: these involve one of more groups with their own control systems for 

doing work. 

• Communities: these include individual persons and groups, as well as groups which 

are formed and are responsible for governing or providing services to them.  

• Societies: these are loose associations of communities, with systematic 

relationships between and among them.  

• Supranational systems: organizations of societies with a supra-ordinate system of 

influence and control.  

The properties (behavior) of a system as a whole emerge from the interaction 

between the components that comprise the system. Regardless of their complexity, 

they each depend upon the same essential twenty subsystems that perform specific 

processes, in order to survive and to continue the propagation of their species or types 

beyond a single generation. The twenty subsystems and the processes of all living 

systems are arranged by input-throughput-output processes. Some of these processes 

deal with material and energy for the metabolic processes of the system. Other 

subsystems process information for the coordination, guidance and control of the 
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system. Some subsystems and their processes are concerned with both. They are as 

follows: 

Subsystems/processes that take place in the Systems Input Stage  

• Input transducer: brings information into the system  

• Ingestor: brings material-energy into the system  

Subsystems/processes which take place in the Systems Throughput Stage 

A. Information processes: 

• Internal transducer: receives and converts information brought into system 

channel  

• Net: distributes information throughout the system 

• Decoder: prepares information for use by the system 

• Timer: maintains the appropriate spatial/temporal relationships  

• Associator: maintains appropriate relationships between information sources 

• Memory: stores information for system use  

• Decider: makes decisions about various system operations 

• Encoder: converts information to needed and usable form  

B. Material-Energy processes:  

• Reproducer: with information, carries on reproductive function 

• Boundary: with information, protects system from outside influences  

• Distributor: distributes material-energy for use throughout the system  
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• Converter: converts material-energy into suitable form for use by the system 

• Producer: synthesizes material-energy for use within the system  

• Storage: stores material-energy used by the system  

• Motor: handles mobility of various parts of the system 

• Supporter: provides physical support to the system  

Subsystems/processes which take place in the Systems Output Stage  

• Output transducer: handles information output of the system   

• Extruder: handles material-energy discharged by the system 

Living Systems Theory has been used to explain the behavior of some large 

industrial corporations  (Duncan, 1972); in general analyses of organizations (Lichtman 

and Hunt, 1971, Reese, 1972, Noell, 1974); for explaining the pathologies of 

organizations (Cummings and DeCotiis, 1973); and in studies of accounting (Swanson 

and Miller, 1989), and management accounting (Weekes, 1984). Other studies assess 

the effectiveness of a hospital (Merker and Lusher, 1987) and a metropolitan 

transportation utility (Bryant and Merker, 1987). The largest application of Living 

systems theory has been a study of the performance of 41 US Army battalions (Ruscoe 

et al., 1985). All these studies revealed important relationships between characteristics 

of matter-energy, information processing and organizational effectiveness. 
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2.1.4 Social Entropy Theory (Bailey, 1990) 

Social Entropy Theory (SET) uses the system’s internal entropy level as an 

indicator of system state, where entropy is a measure of system disorder. Entropy can 

show up in the system as various indicators of system disorder, such as faulty 

communication, errors, inadequate supply levels, lack of energy, resources, or even 

clutter. If entropy gets too high, the functionality of the system is impaired or even 

threatened. From the standpoint of SET, entropy can best be properly managed by a 

self-steering process, where the chief goal of self-steering is to keep system entropy 

levels from getting too high.  

SET presents six structural dimensions that are salient for all social systems. 

These are, respectively: population size (P), information (I), level of living of the social 

system (L), organization (O), technology (T), and spatial area or territory (S). In 

conjunction, these dimensions are known by the acronyms PILOTS or IPLOTS. Energy has 

been assumed in this model as being present in the territory or spatial area (S), but that 

has not been clearly specified. As energy plays an extremely important role in self-

steering, it is helpful at this point to add energy (E) specifically to the model to attain 

EIPLOTS. 

SET facilitates the goal of analyzing self-steering through its distinction between 

characteristics or variables that are global, mutable or immutable. Global variables are 

macro-variables that are defined only for the society as a whole; they cannot be defined 
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for individuals. These include such variables as total wealth of the nation (L), the social-

class structure (O), the occupational division of labor (O), the total land area of the 

territory (S), etc.  

The polar opposites of the global variables are the immutable variables, which 

are micro-variables that describe the characteristics of individuals. Immutables are 

properties that are only defined for individual persons and cannot be defined for the 

society as a whole. Immutable variables are generally present from birth, and are thus 

similar to “ascribed” variables. Immutables generally cannot be changed (or at least not 

without extreme difficulty). Examples of common immutables are an individual’s birth 

date, skin color, height, eye color, sex, etc.  

It is clear that global variables are highly relevant for the process of self-steering, 

as they provide a context which facilitates or constrains the steering process. A 

fortuitous set of global characteristics can make self-steering quite easy. In contrast, an 

unfortunate array of globals can make self-steering very difficult. It is less clear how 

immutables affect self-steering, but they certainly do. Aside from such activities as 

voting, or participating in various holiday festivities or rituals, the self-steering of a social 

system is not generally accomplished by all members of the society, but only a subset of 

the population. These individuals are selected by a variety of means, but often their 

selection is not random. Rather, persons who steer societies (either individually or 
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collectively) tend to be represented non-randomly on key immutable variables such as 

race, sex, age, etc. 

Between the globals and immutables in SET are the mutable variables. These 

intermediate variables are true micro-macro links, as they can serve either as individual 

or as societal characteristics. The mutables at the individual level are similar to 

“achieved” variables. These are the individual counterparts of the EIPLOTS dimensions. 

For example, in addition to his or her immutable variables such as age or sex, each 

individual has mutable characteristics such as his or her educational level (I), income (L), 

real estate ownership (S), and access to a computer (T). These mutables, which are 

exhibited by all persons in the society, may be aggregated to form mutable 

distributions, such as the average income of the society (L), the average educational 

level of the society (I), etc. Notice that these distributions are not globals, but they are 

aggregated macro properties of society, and serve to link the individual to the society. 

Depending on their specific levels in a given society, the mutable distributions can also 

serve to either facilitate or hinder the process or self-steering in the social system. 

Swanson, Bailey, and Miller (1997) discuss a progression of entropy-related 

measures in systems ranging from physical through biological to social, with an 

emphasis on social systems (Swanson et al., 1997). This progression is discussed in the 

context of Living Systems Theory, as developed by Miller (Miller, 1978), and integrates 

that theory with Social Entropy Theory (Miller, 1978), as developed by Bailey (Bailey, 
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1990), and Macro Accounting Theory as developed by Swanson (Swanson, 1993). This 

integration is important for at least two reasons. The first reason is that the domains of 

the theories being integrated are contained progressively each in the other. The very 

broad domain of Living Systems Theory concerns all living systems existing in space-time 

and thus contains the domain of the more narrowly focused Social Entropy Theory, 

which in turn contains the domain of Macro Accounting Theory (which concerns 

economic systems within social systems). 

2.1.5 Commonalities among Theories of Topological Organization of Social 

Networks 

The theories discussed above explain the organization of network structure 

(groups, societies, organizations, countries, etc...) through network flows (processes like 

communication, collaboration, reproduction, coordination, control, etc...), as well as the 

constraints that impact network structure and network flow (geographic 

distance/boundaries, land availability etc...). For example, in the theory of social 

systems, Parson deals with the analysis of social processes in relation to the structure of 

social systems and their variability. He states that all social systems perform certain 

basic functions (adaptation, goal attainment, integration and latency) (Parson, 1951). In 

autopoietic theory, Luhmann talks about how human systems use communication as a 

medium to structure themselves through the process of self-reference (Luhmann, 

1986). In living systems theory, Miller states a general theory about how living systems 
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work and how they organize themselves through emergence and interaction (Miller, 

1978). In social entropy theory, Bailey uses internal entropy as an indicator of the state 

of a system (Bailey, 1990) and its organization. Though these theories have their origins 

in different branches of science and constitute different elaborations of the organization 

of networks, they all state that some kind of information is transferred within the 

network which guides the topological organization of the network structure through 

which information flows in the real world. 

The conceptual model emerging from the literature in this section is shown 

below. Figure1 provides a conceptual framework for the theories of topological 

organization. It depicts a linkage between network structure and network flows. The 

relationship between network structure and network flows is subject to constraints on 

the network.  Theories of social organization are thus well suited to explain 

organizations as a whole.  However, they do not treat individual network phenomena 

that are observed within social systems, such as trust and reciprocities. Theories of 

social organization are thus inherently incomplete.    

Figure 1:  Topological Organization of Network - Conceptual Model 
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2.2 Network Flow in Social Phenomena 

I start this section by defining social phenomena. Social phenomena include “all 

behavior that influences or is influenced by organisms sufficiently alive to respond to 

one another” (John, 1925). Theories of social phenomena show that social phenomena 

within a social network are caused by network flows. These theories, in contrast to 

theories of social organization, do not address the organization of social network 

instead they try to explain a specific social phenomenon within the broader context of 

social networks that occur in the real world. An overview of theories to be explored is 

shown below in Table 3. Theories chosen in this section specifically focus on the role of 

network flows in social phenomena. These theories are reviewed with the intent of 

showing the underlying commonalities, from which I derive a conceptual model that 

encompasses them all. I do not to compare, contrast or assess the impact of these 

theories. The commonalities and the conceptual model that arises will be discussed 

after briefly summarizing the theories below: 



www.manaraa.com

36 
 

Table 3: Theories of Social Phenomena--Literature Overview 

 

2.2.1 Diffusion of Innovations (Rogers, 2003) 

In his book Diffusion of Innovations, Everett Rogers describes the process of 

adoption of new innovations. He emphasizes the role of interpersonal communication in 

the adoption of innovations. According to Rogers, diffusion is “the process in which an 

innovation is communicated through certain channels over time among the members of 
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a social system” (p. 5), the key components in this definition being innovation, 

communication channel, time and social system. 

For Rogers, “diffusion is a very social process that involves interpersonal 

communication relationships” (p. 19). He defines communication as “a process in which 

participants create and share information with one another, in order to reach a mutual 

understanding” (p. 5). This communication occurs through channels between sources. 

Rogers defined a source as “an individual or an institution that originates the message 

and an interpersonal channel consists of two-way communication between two or more 

individuals through which the message gets to the receiver” (p. 204). These 

interpersonal channels are powerful enough to create or change strong attitudes held 

by an individual. 

Rogers (2003) defined the social system as “a set of interrelated units engaged in 

joint problem solving to accomplish a common goal” (p. 23). Since diffusion of 

innovations takes place in the social system, it is influenced by the social structure of the 

social system. For Rogers (2003), structure is “the patterned arrangements of the units 

in a system” (p. 24). He further claimed that the nature of the social system affects 

individuals’ innovativeness, which is the main criterion for categorizing adopters into 

innovators, early adopters, early majority, late majority and laggards (p. 22). 

Although Rogers’s theory has influenced innovation studies in various fields over 

the last several decades, subsequent empirical research challenges the notion of an 
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idealized, linear 'technology push-market pull' dichotomy first proposed in his work 

(Baskerville and Pries‐Heje, 2001, Dosi, 1982). In later work, even Rogers broke 

away from the linear orientation of his original project. The author suggests that his 

original framework might be augmented through the use of complex adaptive 

systems, resulting in a hybrid framework to explain the diffusion of innovations 

(Rogers et al., 2005).  

2.2.2 The Strength of Weak Ties (Granovetter, 1973) 

Granovetter asserts that acquaintances (weak ties) are less likely to be socially 

involved with one another than close friends (strong ties). Thus the set of people made 

up of any individual and his or her acquaintances comprises a low-density network (one 

in which many of the possible relational lines are absent), whereas the set consisting of 

the same individual and his or her close friends will be densely knit (many of the 

possible lines are present). 

The overall social structural picture suggested by this argument can be seen by 

considering the situation of some arbitrarily selected individual. This individual will have 

a collection of close friends, most of which are in touch with one another, i.e., a densely 

knit clump of social structure. Moreover, the individual will have a collection of 

acquaintances, few of whom know one another. Each of these acquaintances, however, 

is likely to have close friends in his own right and therefore to be enmeshed in a closely 

knit clump of social structure, but one different from the individual’s. The weak tie 
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between the individual and his acquaintance, therefore, becomes not merely a trivial 

acquaintance tie but rather a crucial bridge between the two densely knit clumps of 

close friends. To the extent that the assertion of the previous paragraph is correct, these 

clumps would not, in fact, be connected to one another at all were it not for the 

existence of weak ties. Thus, individuals with few weak ties will be deprived of 

information from distant parts of the social system and will be confined to the provincial 

news and views of their close friends. This deprivation will not only insulate them from 

the latest ideas and fashions but may put them in a disadvantaged position in the labor 

market, where advancement can depend on knowing about appropriate job openings at 

just the right time. 

2.2.3 Structural Holes (Burt, 1976, Burt, 1992) 

Burt, through his structural holes argument, suggests that social capital is 

created by a network in which people can broker connections between disconnected 

network segments. He views society as a network in which people or groups of people 

can exchange all types of goods and ideas in order to achieve their goals.  Some of these 

people or groups of people achieve better returns in lieu of their efforts than others do. 

For example, some people earn a better remuneration, some become more important 

and some lead more important projects. The human capital explanation of this inequity 

is that people who do better are more able people, more intelligent, more articulate, 

more attractive or more skilled. Social capital is a contextual complement of human 
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capital, suggesting that people who are better connected should be more successful.  

Thus, holding a specific position in the network structure is associated with a certain 

level of social capital. 

Burt defines structural holes as weaker connections between two groups in a 

social structure. These holes in the structure create competitive advantage for the 

people who have relationship that span these holes. This does not mean that the people 

in each group are unaware of the existence of the other group. Instead, the people in 

each group are more focused on their own activities and do not participate in the 

activities of the other group. Thus, structural holes are an opportunity to broker and 

control the flow of information across groups.   

 2.2.4 Closure Theory of Social Capital (Coleman, 1988) 

Coleman’s network closure argument suggests that networks in which everybody 

is connected to everybody and no one can escape notice of the other (in other words 

dense networks) are the source of social capital. He defines social capital as a resource 

for action within a social structure (Coleman, 1988). Network closure does two things 

for people in a network. First, it affects access to information. Second, network closure 

facilitates collective sanctions, and fear of sanctions for behavior that is out of the norm 

fosters conformity.  It also reinforces trust between those who already conform.    

Coleman’s study of high school students (Coleman, 1988) illustrates his 

argument. He argues that closure explains why some students are more likely to drop 
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out of school. When adults in a child’s life are more connected to each other the closure 

argument predicts that norms, trust and consensus on sanctions are more likely among 

adults.  This suggests adults can more effectively enforce their interest in the child 

completing his or her education. Coleman presents three bits of evidence, which show 

that children living in closed networks are less likely to drop out from school. They are as 

follows: 

1. Children living in a family of two parents with few children are less likely to drop 

out of school (two parents living together can collaborate more effectively to 

supervise a child’s education than two parents living apart).  

2. Children who have lived in the same neighborhood are less likely to drop out of 

school (parents, teachers and are more likely to know each other and collaborate 

on a child’s education than parents who have moved in a new neighborhood).  

3. Children in religious schools (e.g., Catholic school) are less likely to drop out of 

school (parents, teachers and parents of other students are more likely to know 

each other and collaborate in the child’s education). 

2.2.5 Small World Theory 

Another well-known area of network theorizing is small world theory. In the 

1950s and 60s, a stream of mathematical research sought to explain coincidences of 

mutual acquaintanceship (Rapoport and Horvath, 1961, Sola Pool and Kochen, 1978–

1979). The basic thrust of the research was to show that societies were probably much 

more close-knit than popularly believed. A field experiment by Milgram (Milgram, 1967, 

Travers and Milgram, 1969) supported this theory, finding that the paths that link any 
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two random Americans were incredibly short. Restarting this stream of research twenty 

years later, Watts and Strogatz (Watts and Strogatz, 1998) asked how human networks 

could have such short average distances, given that human networks were so clustered, 

a property which was known to lengthen network distances (Rapoport and Horvath, 

1961). The answer, Watts and Strogatz showed, was simple: adding even a small 

number of random ties to a heavily clustered network could radically reduce distances 

among nodes. The reason was that many of these random ties would be between 

clusters, which formed bridges. 

2.2.6. Other Theories of Social Phenomena 

There are many more theories of social phenomena. For example, Putnam 

(Putnam, 1995) described social capital as feature of social organization, such as trust, 

norms and networks that can improve efficiency of society by facilitating coordinated 

action. Bourdieu (Bourdieu, 1986) defines social capital as “the aggregate of the actual 

or potential resources which are linked to possession of a durable network of more or 

less institutionalized relationships of mutual acquaintance and recognition.” Allen 

(Allen, 1977) found that communication tends to increase as a function of spatial 

proximity in an organizational setting. Powell (Powell, 1990) found that network forms 

of organization with reciprocal patterns of communication and exchange are 

alternatives to hierarchically or market-based governance structures. They are more 

suited to describing companies involved in an intricate latticework of collaborative 
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ventures with other firms over extended periods of time.  Uzzi (Uzzi, 1997) found that 

embeddedness in an intra-firm network promotes economies of time, integrative 

agreements, Pareto improvements in allocative efficiency, and complex adaptation. 

However, embeddedness also insulates firms within a network from information that 

exists beyond their network, making the firm vulnerable to exogenous shocks that can 

derail the firm’s economic performance. Podolony (Podolny, 1993) proposes that 

organizations overcome problems of market uncertainty by adopting a principle of 

exclusivity in selecting exchange partners. His research suggests that organizations that 

operate in an environment of high market uncertainty tend to engage in exchange 

relations with organizations with whom they have transacted in the past or 

organizations with similar status.  

2.2.7 Commonalities among Theories of Social Phenomena 

The theories of social phenomena described above identify a social phenomenon 

within a network and explain the phenomenon within the broader context of a social 

network that exists in the real world. These theories do not attempt to explain the 

organization of the social network. In all instances, the social phenomena under 

observation within a network structure are caused by network flow. For example, 

Rogers talks about the importance of interpersonal communication within a social 

system for diffusion of innovation (Rogers, 2003). Granovetter (Granovetter, 1973) 

suggests that weak ties are the sources of new information that flows into the network 
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from the outside.  In his structural holes theory, Burt talks about competitive advantage 

being derived by creating network flows between two different cliques. This suggests 

competitive advantage is obtained from being on the fringe of a network (Burt, 1976). In 

contradiction to Burt, Coleman talks about the advantage of being in the middle of 

network flows within a clique and the risks of being on the fringe of a network 

(Coleman, 1988). Small world theory shows that creating random ties within a heavily 

clustered network reduces the distance between the people in the network. This 

improves network flow, which results in better communication between the members 

of the network (Watts and Strogatz, 1998). In summary, theories of social phenomena 

are different elaborations of the impact of network flow on social phenomena. 

Figure 2: Theories of Social Phenomena - Conceptual Model   

 

Figure 2 illustrates the conceptual model that underlies all theories of social 

phenomena.  A network phenomenon is derived from network flows.  In other words, 

the paths that information takes as it spreads throughout a network and the distance 

between the sources and the recipients of information give rise to observable network 

phenomena in real world networks. However, theories of social phenomena do not 

treat structural factors.  Thus they will have difficulty explaining the organization of a 

network and its impact on the network’s overall performance. 
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2.3 Integrated Network Theory and Perspective on Network Constraints 

Sections 2.1 and 2.2 illustrate that network constraints play an important role in 

directing network flows. In autopoietic theory, Luhmann talks about communication 

acting as a constraint on the process of self-reference, and thereby being a constraint on 

network organization (Luhmann, 1986). In social entropy theory, Bailey uses internal 

entropy as an indicator of the state of a system (Bailey, 1990) and as a constraint on its 

organization. Similarly, in theories of social phenomena, Allen found communication to 

be a function of spatial proximity (Allen, 1977). Rogers found that in interpersonal 

channels, the communication may have a characteristic of homophily, that is, “the 

degree to which two or more individuals who interact are similar in certain attributes, 

such as beliefs, education, socioeconomic, status, and the like,” but the diffusion of 

innovations requires at least some degree of heterophily, which is “the degree to which 

two or more individuals who interact are different in certain attributes” (Rogers, 2003). 

Thus homophily and heterophily can act as constraints on network flow. 

To better understand the role of network constraints, I look at Atkin’s seminal 

work in which he referred to network structure and network flow as backcloth and 

traffic. The backcloth consists of an underlying infrastructure that enables and 

constrains the traffic, and the traffic consists of what flows through the network, such as 

information (Atkin, 1974). According to Borgatti and Foster, most of the differences 

between theories of topological organization of networks and theories of social 
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phenomena are elaborations of the same theory (Borgatti and Foster, 2003). They look 

at the network constraints from a contextual perceptive of their research.   

Figure 3: Networks with Different Structures but the Same Number of Nodes and Ties 

 

To illustrate this point, Borgatti and Halgin (Borgatti and Halgin, 2011) provide 

the example in Figure 3. The authors suggest that Burt’s theory may look different from 

Granovetter’s, but the differences are largely in language and focus. In Burt’s language, 

A in figure 3 has more structural holes than B, which means A has more non-redundant 

ties. In Granovetter’s language, A has more bridges than B. But whether we call them 

non-redundant ties or bridges, the concept is the same, and so are the consequences: 

more novel information. Where Granovetter and Burt differ is that Granovetter further 

argues that a tie’s strength determines whether it will serve as a bridge. Burt does not 

disagree and even provides empirical evidence that bridging ties are weaker in that they 

are more subject to decay (Burt, 1992, Burt, 2005). However, Burt sees tie strength as a 

mere “correlate” of the underlying principle, which is non-redundancy (Burt, 1992). 

Thus, the difference between these theories comes down to either preferring the distal 

cause (strength of ties), as Granovetter does, or the proximal cause (bridging ties), as 
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Burt does. The former yields an appealingly ironic and counterintuitive story line, while 

the latter “captures the causal agent directly and thus provides a stronger foundation 

for theory” (Burt, 1992). 

Similarly, Burt (2005) points out that the conflict between Burt’s structural holes 

theory (Burt, 1992) and Coleman’s closure theory (Coleman, 1988) is more apparent 

than real, as both assume that ties constrain relationships in a network (Burt, 2005). The 

difference is simply that in Coleman’s educational setting, constraint is good, and in 

Burt’s corporate setting, constraint is typically bad. It is really only the orientation of the 

social capital concept that creates contradiction.  

Based on the above commonalities, Borgatti and Kidwell (Borgatti and Kidwell, 

2011) proposed a three layer model to explain the social theory building process as 

follows: 

Figure 4 : Social Theory Building Process 

                    
Networks 

Reasoning 

Personalization 

Network models of social systems.  

Defining theoretical constructs, 

outcomes and relating them to 

underlying network model  

Identify variables drawn from the 

immediate empirical context and 

based on the reasoning form a theory. 
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The bottom layer consists of a very simple model of how social systems work, 

which is essentially that they are networks through which information (or any resource) 

flows from node to node along network paths consisting of ties that are interlocked 

through shared endpoints. Therefore the bottom layer is characterized by fundamental 

network properties such as centrality and centralization (Wasserman and Faust, 1994).  

Centrality and centralization are explained in section 4.3.4.1 and section 4.3.4.2. 

Scholars impose paradigmatic constraints upon the fundamental attributes of 

the network, in order to provide a theoretical explanation of the underlying 

phenomena. They define theoretical constructs and outcomes, from which they derive 

theorems about the underlying network structure and network flows using their 

particular line of reasoning. Theory, at this intermediate level (middle layer in fig 4.), 

consists of relating fundamental network properties (such as betweenness centrality) to 

outcomes in the same conceptual universe (such as frequency and time of first arrival of 

something flowing through the network). These outcomes may thus be influenced by 

the paradigmatic constraints that have been imposed by the scholar.   

The top layer of figure 4 provides an empirical context to the theories that 

emerge from the middle layer. It can be viewed as a “personalization” of the theory, 

because the empirical context under which the scholar has formulated his/her theory 

may vary.  For example, Granovetter and Burt both look at non-redundant ties. 

Granovetter (Granovetter, 1973) investigates social networks that pertain to finding a 

job. In that context, he focuses on the strength of ties and how they act as an 
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antecedent to novel network flows. Burt (1992), on the other hand, studies social capital 

in a corporate setting. By focusing on structural holes he is able to connect information 

flows to personal creativity and the production of value (Burt, 1992). 

The most important point conveyed by the model in figure 4 is that the 

information flowing through a network provides a conceptual universe, within which we 

can impose conceptual constraints like connectedness and relate them to other 

properties like the probability of receiving information. Theoretical constructs that 

pertain to a particular conceptual universe are thus true only within the contextual 

model of that universe; they may be false in a different context (Borgatti and Kidwell, 

2011). These constructs are derivations of the particular model under consideration, 

yet, as theories of network phenomena show, they are widely misperceived to be 

unconnected to the theory (Borgatti and Kidwell, 2011).  In addition, theoretical 

constructs that pertain to a particular conceptual universe cannot be considered generic 

measures or generic techniques like regression, which can be divorced from an 

underlying model of how things work (Borgatti, 2005).  

Figure 5 below illustrates the integrated conceptual model of network 

organization and network phenomena, which has emerged from the literature so far. It 

depicts a linkage between network structure and network flows. The relationship 

between network structure and network flows is subject to constraints on the network. 

Network flows cause the network phenomenon.   
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Figure 5: Integrated Conceptual Model 

 

 

2.4 Differences between Real-World and Online Social Networks  

All cases that have been described until now occur in the real world. Network 

flows in the real world take place between the seeker of information and the source of 

information, and all network flows transpire within existing social relationships (Bristor, 

1989, Duhan et al., 1997, Money et al., 1998). Individuals in a strong relationship tend to 

interact more frequently and exchange more information, compared to those in a weak 

relationship (Brown and Reingen, 1987). Because interactions only happen between 

people who have social relationships, an individual’s relationship network and his/her 

interaction network were considered to be one and the same (Burt, 1987). In general, 

researchers in these studies observe a stable network structure in which the 

correlations among friends could be higher than those among strangers. Hence, the task 

is to determine whether the difference in correlation is due to social interaction or 

something else (Moffitt, 2001). 
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To my knowledge, no study has been undertaken, which suggests that extant 

social theories developed for the real world networks can be applied to social networks 

that are formed online. Consequently, it cannot be said that real world constraints such 

as connectedness and distance have any significant impact on the behavior online social 

networks (Borgatti and Cross, 2003). Instead, online social networks may be most 

affected by the topological organization of network structure (e.g., “scale free” 

(Barabási and Albert, 1999), “assortativity” (Newman, 2002) and “small world” (Watts 

and Strogatz, 1998) or by various attributes of network flows (e.g., paths, geodesics) 

(Borgatti, 2005), which extant theory of social networks does not really consider 

(Borgatti and Cross, 2003). These topics, which have been mentioned in section 1.1, are 

covered in sections 2.5 and 2.6.  

As mentioned in section 1.1, online social networks are different from real world 

social networks. We know from observation of practicing firms (Wiertz et al., 2010), that 

online social networks are an emergent phenomenon (in the sense of (Drazin and 

Sandelands, 1992, Sandelands and Drazin, 1989). Unlike real world social networks, not 

all network flows generated in an online social network can be attributed to social 

relationships (Pei et al., 2014). People in online social networks may interact virtually 

with people with whom they share common interest. However, this does not necessarily 

mean that they are connected with each other. For example, in hashtag communities on 

Twitter converse on a particular topic. This does not mean that they are “friends” with 

or “followers” of each other (Weng et al., 2012). Also, the ability to conduct a search on 
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online social networks (Watts et al., 2002, Adamic and Adar, 2005) makes the network 

structure and the network flows, which result from the interaction that follows that 

search, highly dynamic (Dodds et al., 2003). 

The nascent body of research on online social networks treats network structure 

(Centola, 2010, Chomutare et al., 2014, Sasidharan et al., 2011), network flow (Hodas 

and Lerman, 2014, Burt et al., 2013, Aral and Walker, 2011, Dellarocas et al., 2013, 

Hodas and Lerman, 2012) and network phenomena (Aral and Walker, 2012, Pei et al., 

2014, Khammash and Griffiths, 2011, Muchnik et al., 2013a, Muchnik et al., 2013b) 

separately. Studies that characterize the mechanisms through which network structure, 

network flow and network phenomena collectively emerge and operate are woefully 

lacking (Aral et al., 2013). We cannot even identify the loci of influence within a social 

network reliably.   

Several studies that analyze interactions between users of online social networks 

have been published to date. Flicker data was used to study user interaction about 

photos that have been posted (Cha et al., 2009, Valafar et al.). Twitter data has been 

used to study how information diffuses online (Cha et al., 2010, Kwak et al., 2010). 

Facebook data has been used to study the time-varying dynamics of user interactions 

(Viswanath et al., 2009). The general consensus of this growing body of research is that 

a network interaction graph represents relationships that are meaningful online, 

whereas a graph of all social connections does not (Wilson et al., 2012). Only a fraction 

of all connections represent active connections, as interactions are not evenly 
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distributed across a user’s connected network. In an interaction graph, a link between 

two actors in an interaction network exists, only if they have interacted, irrespective of 

whether they are connected or not (Wilson et al., 2012). This means that interactions 

between actors that are not socially connected can occur. In addition, interaction graphs 

demonstrate significantly different properties from connected graphs. For example, 

interaction graphs exhibit larger graph diameters and lower clustering coefficients than 

connected graphs (Wilson et al., 2012).15 It has also been observed that the selection of 

influential nodes and their effective range of influence change when interactivity is 

taken into account (Chen et al., 2009).  

In summary, online social networks and real world social networks differ from 

each other in following ways: 

1. Social networks online are significantly larger than the real world social 

networks.  

2. Real world social networks are non-emergent whereas online social networks are 

emergent. 

3. Network structures in real world social networks are static whereas online social 

networks have dynamic network structure. 

4. Networks flows generated in real world social networks transpire within social 

relationships. Therefore, their connected network and their interactive network 

are the same. By contrast, in online social networks the connected network and 

the interactive network differ significantly. 

                                                           
15

 These properties of networks are defined in section 4.4 of this dissertation. 
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This section has established that, to date, no study has shown that social 

network theories from the real world directly apply to online social networks, and 

inherent differences between real-world and online social networks have been 

identified. In addition, studies that characterize the mechanisms through which network 

structure, network flow and network phenomena collectively emerge and operate in 

online social networks are woefully lacking.  The primary research gap of this 

dissertation can thus be stated as follows: no useful behavioral theory of online social 

networks, which integrates network structure, network flow and network phenomena, 

exists. The behavior of online social networks has not really been characterized, and it 

definitely cannot be predicted.  

2.5 Network Structure Topologies 

Network structures have been widely studied in various disciplines of science 

(Pastor-Satorras and Vespignani, 2004, Westerberg and Wennergren, 2003, Keeling, 

2005, Watts and Strogatz, 1998). Biological networks (Keeling, 2005), neural networks 

(Hopfield and Herz, 1995) and the World Wide Web (Pastor-Satorras and Vespignani, 

2004) constitute examples of network structures that have been studied. The availability 

of large databases has allowed the study of the topology of interactions in variety of 

systems as diverse as communication systems to biological systems (Pastor-Satorras and 

Vespignani, 2004, Westerberg and Wennergren, 2003, Keeling, 2005). The main 

outcome of this activity has been to reveal that, despite the inherent differences, most 
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of the real networks are characterized by the same topological properties, such as 

relatively small characteristic path lengths and high clustering coefficients  (Watts and 

Strogatz, 1998)16. All these features make real networks radically different from regular 

lattices and random graphs, the standard models studied in mathematical graph theory 

(Watts, 1999).  

The most important topological properties of networks discussed in the 

literature are scale free and small world properties of networks (Klemm and Eguiluz, 

2002) which are described below. 

2.5.1 Scale-free Networks 

Networks that grow by attaching new nodes to existing nodes (by adding one tie 

only) form trees. They have no cycles (Figure 6 (a)) If, in this process, new nodes attach 

preferentially to existing nodes with a large number of ties, then the result is a scale-

free network (Albert and Barabasi, 2000). Scale-free networks are distinguished by two 

characteristics. First, they are highly clustered (Barabási and Bonabeau, 2003); if two 

nodes share a common neighbor, it is likely the two are themselves adjacent. Second, 

the node degrees are distributed according to a power law (Barabási and Albert, 1999).   

In Scale Free networks, the distribution of different network parameters acts in 

an exponential fashion (Figure 6(b)). The most interesting of these parameters is the Out 

Degree (Goh et al., 2002)—it measures the distribution of connections from each node 

                                                           
16

 These network properties are defined in section 4.4. 
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outward. In Scale Free networks this distribution of connections is highly uneven. Some 

of the members are connected to a lesser degree and some of the members are 

connected to greater degree, which is how they hold a senior position in the network 

(Goh et al., 2002). Networks of this type are relatively resilient, but are not at all 

immune to attack. In other words, a random removal of network members (a crash) will 

not hurt its stability, but a directed removal of key points will cause the network to 

collapse quickly (Doyle et al., 2005). Finally, in Scale Free networks, the distribution of 

density or congestion is constant and not dependent on the exponential coefficient of 

the distribution of the number of connections (Jeong, 2003).  

2.5.2 Small World Networks 

A Small World network is a network in which most nodes are not neighbors of 

each other but most nodes can be reached by other nodes in the networks by hopping 

over a few nodes (Watts and Strogatz, 1998). The small-world phenomenon is not 

merely a curiosity of social networks or an artefact of an idealized model (Milgram, 

1967, Kochen, 1989). It is probably generic for many large, sparse networks found in 

nature (Kretzschmar and Morris, 1996). These networks form when long distance 

connections are added at random to regular networks (Figure 6(c)) (Watts and Strogatz, 

1998). They are characterized by low path lengths between nodes and by high clustering 

coefficients (CC) (Watts and Strogatz, 1998). 
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The clustering coefficient (CC) is the extent to which the nodes in the graph tend 

to create a unified group with many internal connections but few connections leading 

out of the group (Watts and Strogatz, 1998). The clustering coefficient (CC) can be seen 

as a measurement of the nodes’ isolation. The Characteristic Path Length (CPL) is a 

measurement of the average distance needed to pass from node to node (Watts and 

Strogatz, 1998). A network can be considered a Small World network when its CPL is 

similar to the CPL of a random network of the same length, but its CC is much larger (at 

least by a single order of magnitude) when compared to a random network (Watts and 

Strogatz, 1998). In other words, in Small World networks, we expect to find a large 

unified group (Herman, 2003).  

 Figure 6: Common structures in networks. (a) A tree has branches, usually from a root node, 
and no cycles (loops). (b) A scale free network has a negative exponential distribution of ties per 
node. (c) A small world has a regular structure of local connections with some randomly placed 
long-range connections. (Source: (Paperin et al., 2008) 
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2.5.3 Summary of Section 

Table 4: Network structure characteristics 

Types of Network Characteristics 

Scale-free Networks High Clustering Co-efficient, Power Law Degree Distribution 

Small-world Networks High Clustering Co-efficient, Shorter Characteristic Path Length 

Table 4 shows the defining characteristics of scale-free and small-world 

networks. The above literature clearly states that different social networks share very 

similar topological characteristics, mainly small world and scale free characteristics 

(Klemm and Eguiluz, 2002), which are very different from the regular lattice structures 

(Watts, 1999), or random structures (Watts and Strogatz, 1998) studied in graph theory. 

Description of these characteristics of network topology is provided in the literature that 

has been referenced in this section. Methods for measuring these topological 

characteristics will be discussed in detail in the variables and measures section (section 

4.3). 

2.6 Network Flows (Borgatti, 2005) 

Borgatti (Borgatti, 2005) argues that the various flow types can be distinguished 

by two properties, the routes through which the traffic flows and the method by which 

the flows are propagated. Routes are important because, for example, in some flow 

processes it is desirable for traffic to flow over the shortest possible routes, as in a 

package delivery system, whereas in other flows the traffic meanders aimlessly, as in 
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gossip passing through a communication network. Methods of propagation, too, differ 

among networks. For example, the propagation of an e-mail chain letter, which gets 

sent simultaneously to a list of e-mail addresses, is quite different than that of a 

traditional, paper-based chain letter, which is sent to one person at a time. 

Based on the above explanation, Borgatti (Borgatti, 2005) classified routes into 4 

types: 

• Paths: A path is a sequence of distinct nodes, with each node in the sequence 

being a neighbor of the preceding node. If one travels from the first node in the 

path to the last by following ties, then the number of ties that are traveled is the 

path’s length. Each node in a path can only be visited once; each tie can be 

travelled only once.  

• Geodesics: There might be multiple paths of varying lengths from one node to 

another, and a shortest path amongst such paths is called a geodesic. 

• Trails: A trail is like a path, except that nodes can be visited more than once. 

However, ties cannot be travelled more than once. 

• Walks: A walk is the most general type of route, where it is permissible both for 

nodes to be visited more than once and for ties to be traveled more than once.  

Methods of Propagation can be classified into 3 types: 

• Parallel Duplication Propagation: Propagation occurs by replicating what is at 

one node to multiple neighbors of the node simultaneously. An example of this 

process is forwarding email to everybody on the mailing list simultaneously. 

• Serial Duplication Propagation: Propagation occurs by replicating what is at one 

node to multiple neighbors of the node one at a time. An example of this process 
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is gossip network amongst friends. A communicator might pass the gossip to a 

friend, and then to another, and then to another. 

• Transfer:  Propagation of this type, allows the traffic to be in only a single 

location at any point in time. An object being passed from node to node, for 

example a package delivery system where the package exists in only one place at 

a time.   

Based on the classification of routes and method of propagation, Borgatti 

proposed the following typology for the flow process: 

              Table 5: Flow Process Based on Route Classification and Method of Propagation 
(Borgatti, 2005) 

 

 

 

 

The examples of flow process from Table 5 are explained below: 

 Internet Server: Information on a server can be accessed by multiple peripheral 

computers at once. For example, in a star network, every computer has a unique 

path to access the server, which is independent of other paths. Therefore, 

multiple computers can access the server simultaneously. The path may not 

necessarily be the shortest path. 

 E-mail Broadcast: A message is forwarded from one person to several of his 

contacts, often by sending one message to all of them simultaneously. It is 

possible that one of the people on the mailing list might have received the same 

 
Parallel duplication  Serial duplication  Transfer  

Geodesics <No process> Mitotic reproduction Package delivery 

Paths Internet server Viral infection Mooch 

Trails E-mail broadcast Gossip Used goods 

Walks Attitude influencing Emotional support Money exchange 
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message from one of his other contacts. It highly unlikely that he receives the 

same broadcasted message from the same person again. 

 Attitude Influencing: Attitude influencing is an influence process in which 

individuals effect changes in each other’s beliefs or attitudes through 

interaction. For example, a speaker may persuade many people at the same time 

about his/her fashion beliefs and continue to influence the same people about 

the same thing over time. 

 Mitotic Reproduction: In this type of reproduction, a cell distributes exact copies 

of genetic material so the daughter nuclei are genetically identical to each other 

and identical to the mother nucleus from which they came. The daughter nuclei 

in turn produce further identical clones. The clones, once fully formed, bifurcate 

from the parent thereby taking the shortest possible route. This is a 

phenomenon in which the information spreads through shortest paths. 

 Viral Infection: Consider the case of an infection to which the host becomes 

immune. The infection spreads from person to person by duplication, like gossip, 

but does not re-infect anyone who already has had it because they have become 

immune. By contrast, in case of gossip, repeated exposure to a message may 

cause the recipient to believe it. This (viral infection) is a phenomenon in which 

information spreads through multiple paths, not just the shortest paths. 

 Gossip: Imagine a juicy, very private, story moving through the informal network 

of employees within an organization. The story is confidential, which does not 

impede its flow, but means it is typically told behind closed doors to just one 

person at a time. It spreads by replication rather than transference. Gossip 

normally does not pass the same link twice (i.e., I do not tell the same person the 

same story), but can pass the same node multiple times. Thus, it traces trails 

through the network rather than walks.  

 Emotional support: A person dealing with cancer receives emotional support 

when other people say or do things that help him or her to feel better. For some, 
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words of encouragement, hope, and optimism are felt to be emotionally 

supportive. These words of encouragement can come from same people over a 

period of time; therefore the same information can travel through same nodes 

and links. 

 Package Delivery: A package, to be delivered by a package delivery service, can 

only be at one place at a time. Its route is designed to be the shortest one 

possible, in order to reduce the package’s delivery time. 

 Mooching: Consider a free loading friend, who stays with you as long as he/she is 

supported and moves on to other people once the support stops, never to revisit 

again. The node and the links are visited only once. 

 Used Goods: A book can only be in one place at a time. As it goes from person A 

to person B to person C, etc., it could easily return to a person earlier in the 

chain, simply because person G has no idea that person B had previously 

received it. 

 Money Exchange: Consider a specific dollar bill that moves through the 

economy, changing hands with each economic transaction. The dollar bill is 

indivisible and can only be in one place at a time. It could easily move from A to 

B, B back to A, A to B again, then B to C, and so on. From a graph-theoretic point 

of view, the bill traverses the network via walks rather than trails. 

Borgatti (2005) mapped the best known centrality measures to the flow types as shown 

in Table 6 below: 
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Table 6: Flow Process and Major Centrality Measures (Borgatti, 2005) 

  Parallel duplication 
Serial 
duplication Transfer 

Geodesics   
Freeman 
closeness 

Freeman closeness, 
Freeman betweenness 

Paths 
Freeman closeness, 
Freeman degree 

 No metrics 
defined  No metrics defined 

Trails 
Freeman closeness, 
Freeman degree 

 No metrics 
defined  No metrics defined 

Walks 

Freeman closeness, 
Freeman degree, 
Bonacich eigenvector 

 No metrics 
defined  No metrics defined 

 

The definition of centrality and centrality measures are discussed in section 2.7.3.2.  

The literature in this section classifies the network flow based on the routes that 

the network flow takes and the method of propagation of information. It illustrates 

some of the prominent work that can be categorized based on the routes and 

propagation methods (Borgatti, 2005). Borgatti noted that most of the sociologically 

interesting processes are not covered by the existing centrality measures. The examples 

from above illustrate that transfer follows Markov processes, in which the probability 

distribution of next step within the process depends only on the current state of the 

network and not on its previous steps (Norris, 1998). Transfer consequently only relates 

to the exchange of goods. By contrast, in a parallel duplication process and in a serial 

duplication process a copy of the information exchanged is maintained at the source, 

who decides whom to whom he/she will pass on the information. This decision can be 

based on where the information came from. Therefore, parallel and serial duplication 
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processes are the only ones that are applicable to information propagation in social 

networks.  

2.7 Social Influence within a Network 

Social influence occurs when an actor adapts his behavior to the behaviors of 

other actors in the social system (March, 1955, Cartwright, 1965, Simon, 1957). A 

precondition for social influence to occur is the availability of information about the 

behavior of other actors (Leenders, 1995). The sociology literature contains many 

different theories of social influence (Homans, 1950, Homans, 1974, Festinger et al., 

1950, Lazarsfeld et al., 1944, Tajfel, 1972, Linton, 1936, Merton, 1957, Nadel, 1957, Burt, 

1987). Most of these state that the attitudes and opinions of people significant to the 

person influences the way in which a person comes to view a situation (Leenders, 1995). 

The opinions of others are seen as an appropriate standard against which an actor 

evaluates his own opinion. In other words, when forming his own opinion, an actor uses 

other actors as his frame of reference and takes their opinions into account (Leenders, 

2002). This idea of frame of reference has been narrowed down to two processes, 

namely communication and comparison (Leenders, 2002). 

2.7.1 Communication 

Communication refers to social influence through direct contact between actors. 

The more frequent and vivid the communication between actors, the more likely actors 
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will adopt each other’s ideas and beliefs. The work of Homans (Homans, 1950, Homans, 

1974) provides a theoretical foundation for influence through communication. Classical 

early empirical work was performed by Festinger et al., 1950; Festinger and Kelly, 1951; 

Lazarsfeld et al., 1944; and Berelson et al., 1954.  Lazarsfeld et al. (1944), for instance, 

argued that people rely on personal contacts to help them select relevant arguments in 

political affairs. An actor trusts the judgment and evaluation of those who are respected 

around him. Berelson and colleagues (Berelson et al., 1954) show that political 

preferences of friends and coworkers strongly determine an actor’s preference and that 

these preferences alter the strength of conviction with which actor’s vote preference is 

held. Baerveldt and Snijders (Baerveldt and Snijders, 1994), who studied the impact of 

network effects on cultural behavior, have found that petty crime offenses among pupils 

to be correlated with the number of offenses committed by their friends. 

2.7.2 Comparison 

In the process of comparison, an actor compares him/herself to others that are 

considered similar in relevant respects (Tajfel, 1972). Comparisons are fundamental to 

the traditional view of social structure as a system of statuses interlocked by role 

relations (Linton, 1936, Merton, 1957, Nadel, 1957). Comparison models were 

developed during the 1970s explicitly as a vehicle for describing the structure of role 

relations defining social status across multiple networks. Burt (1987) argues that a 

comparison is triggered if actors are in competition with one another. By comparison, 
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actors evaluate their relative adequacy. Role playing and imitation are similar to 

comparison (Burt, 1987). 

2.7.3 Measuring Social Influence 

Communication and comparison constitute the two most common approaches 

to measuring the degree of social influence within a network. They tend to be based on 

four observable phenomena: structural cohesion (Wasserman and Faust, 1994), 

equivalence (Wasserman and Faust, 1994), centrality (Freeman, 1977) and 

centralization (Freeman, 1977). 

2.7.3.1 Structural Cohesion and Equivalence 

The proximity of actors in a social network is associated with occurrence of 

influence between two actors (Burt and Doreian, 1982, Erickson, 1988, Friedkin, 1983). 

Two ways of measuring social proximity, structural cohesion and equivalence, have 

provided contrasting approaches to studying social influence (Marsden and Friedkin, 

1993). Structural cohesion determines an actor’s influence based on number of actors 

to which he/she is connected and the strength of the paths between these actors 

(Wasserman and Faust, 1994). The most restrictive definition of structural cohesion is 

simple adjacency where two actors are proximate if and only if they are directly tied in a 

network (Wasserman and Faust, 1994). This is very similar to the process of 

communication (Mokken, 1979, Seidman and Foster, 1978).  
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The equivalence approach defines influence in terms of actor’s similarity of 

profiles of network relationships (Wasserman and Faust, 1994). For example, in a binary 

network, a structurally equivalent pair is indistinguishable when they exhibit exactly the 

same set of present and absent relations with an identical set of third actors. In effect, 

one equivalent actor can substitute for another because the two relational patterns are 

impossible to tell apart. The most restrictive case defines two actors as proximate when 

they have identical relationships with others in the network (Wasserman and Faust, 

1994). This is very similar to comparison (Lorrain and White, 1971). 

2.7.3.2 Centrality and Centralization 

The next generation of researchers in the field of networks dedicated their 

efforts to developing metrics for social networks that were inclusive of both structural 

cohesion and equivalence. Freeman (1977) proposed centrality metrics as a measure of 

how influential (central) is a particular actor in a social network (Freeman, 1977) and 

proposed centralization (Freeman, 1979) as a way to measure how centralized a 

network is. Therefore, centrality is a property of an actor, whereas centralization is a 

property of a network. A network is considered to be highly centralized if one or few 

nodes are more connected as compared to other nodes. Similarly, a network is less 

centralized if all the nodes have more or less similar number of connections in a 

network.  



www.manaraa.com

68 
 

In his seminal work, Bavelas (1950) investigated formal properties of centrality. 

He suggested that a particular node or nodes in a group which lies on the 

communication paths of other nodes and connects them hold a more central position in 

a social network (Bavelas, 1950). A similar point of view was also expressed by other 

researchers (Shimbel, 1953, Shaw, 1954). Freeman (Freeman, 1979, Freeman, 1977) 

argued that, to measure the centralization of a network, the centrality measures should 

take into consideration the difference between the most central nodes and all other 

nodes in the network. He went on to propose three different measure of centrality, 

whose relative efficacy depended upon what the researcher in measuring.  

 Degree Centrality measures the communication activity of a node. This is a 

simple count of number of neighbors a node has, with whom it is directly 

connected. 

 Betweenness Centrality measures the control a node can exert on the 

communication process in a network. This measure counts the number of 

shortest paths between any two nodes in a network, passing through a particular 

node. The node that has highest number of shortest paths passing through it 

exerts a better control on the communication process, in the sense that it can 

force the other nodes to take longer paths, which are sub-optimal. 

 Closeness Centrality measures the efficiency of a node’s communication process. 

The distance between two nodes in a network is the shortest path connecting 

the two nodes. This measure counts the sum distances from a node to all other 

nodes in a network. The smaller the sum is, the more central the node.  

Bonacich (Bonacich, 1972) proposed eigenvector centrality to measure the 

influence of one particular node on the other nodes in a network. The eigenvector 



www.manaraa.com

69 
 

centrality of a particular node is high, if it influences just one other node, who 

subsequently influences many other nodes (who themselves influence still more nodes). 

The first node in this network of nodes then regarded as highly influential.  

Bonacich (Bonacich, 2007) states that eigenvectors have advantages over graph-

theoretic centrality measures like degree, betweenness and closeness when it comes to 

measuring the influence of a node in a network. Degree, betweenness, and closeness 

centralities are defined only for classically simple graphs, those with strictly binary 

relations between nodes. Eigenvector centrality is designed to be distinctively different 

from mere degree centrality. Degree, betweenness, and closeness measures are 

especially sensitive to situations in which a high degree position is connected to many 

low degree positions or a low degree position is connected to a few high degree 

positions. By contrast, eigenvector centrality can be used with graphs that allow for 

variations in the degree to which status is transmitted from position to position. For 

example, a nodes degree, betweenness, and closeness centralities values are high when 

the node connects to more nodes without consideration for status of the connecting 

nodes in the network.  However, the eigenvector centrality of a node tends be higher, if 

the node connects to another node with higher eigenvector centrality as opposed to 

lower eigenvector centrality.  
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2.7.3.3 Summary of Section 2.7.3 

From the above literature it can be safely said that eigenvector centrality is the 

best measure so far in measuring the influence of an actor in a network. It not only 

takes proximity based on structural cohesion and equivalence into consideration. It also 

considers the status of actors based on to whom they are connected within a network.  

2.8 Research Gaps and Research Questions  

I restate the primary research gap. 

Primary Research Gap: Currently, no useful behavioral theory of online social 

networks, which integrates network structure, network flow and network phenomena, 

exists.  

The primary research gap breaks down into the following two subordinate 

research gaps, which have been mentioned in section 2.4.1:   

 Research Gap 1 (RG1): Like their counterparts in the real world, online social 

networks have properties such as network structure and network flows. 

However, the academic literature has not addressed the impact of network 

structure on network flows, and vice versa, in absence of real world constraints. 

 Research Gap 2 (RG2): The academic literature has not established that network 

structure and network flows have an impact on social phenomena such as 

influence, in absence of real world constraints. 
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Research Questions: In order to address the above research gaps, I ask the following 

research questions: 

 Research Question 1 (RQ1): Does network structure impact network flows in a 

social network that primarily exists online?  

 Research Question 2 (RQ2): Does network flow impact network structure in a 

social network that primarily exists online?  

 Research Question 3 (RQ3): Does network structure impact influence within an 

online social network?  

 Research Question 4 (RQ4):  Does network flow impact influence within an 

online social network?  

Addressing these research questions will hopefully allow me to achieve my 

research objective, which has been stated as follows (in section 1.2): to investigate how 

an online social network’s structural organization and the network flows within the 

network impact each other and network phenomenon of social influence within 

network.  Figure 7 below, illustrates the relationship between my management 

question, my research objective, the gaps in the existing literature, and my research 

questions. 
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Figure 7: The Relationship between Management Question, Research Objective, Research Gaps 

and Research Questions. 
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3. Research Framework, Scope and Hypothesis 

3.1 Research Framework 

The conceptual frame work that has evolved from the literature is shown below 

(and in figure 5). 

Figure 8: Integrated Conceptual Model 

 

As stated in the literature search above, this framework essentially talks about 

the networks that are formed in the real world, which have constraints like geography, 

physical distance and connections (section 2.1, section 2.2, and section 2.3). Within this 

model, literature has shown that network structure and network flows impact each 

other and network constraints mediate the level of impact between network structure 

and network flows (section 2.1.5 and section 2.2.6). The flows that emerge are the ones 

that shape the network phenomena that happen with in a network (section 2.3.1).  

The gaps in the literature, shown above (section 2.8), make it clear that social 

networks that are formed virtually do not have the real world constraints. Thus it is not 
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clear how network structure and network flows impact each other or, for that matter, 

whether they have an impact on each other at all. Given this change, it also cannot be 

assumed that only network flows have an impact on network phenomena; network 

structure could influence network phenomena as well. It also cannot be assumed that 

network flows are the only factor to have an impact on network phenomena. The 

literature search in chapter 2 has identified the impact of network structure on the 

network phenomena as a gap. 

In order to address these gaps in the literature, I propose the following 

framework, which is in line with the research questions asked in section 2.8. 

Figure 9: Experimental Framework for Research 

 

Figure 9 depicts an experimental framework, which incorporates the conceptual 

model in Figure 8. In addition, it is useful for exploring the impact of network structure 

on network phenomena, a shortcoming of the conceptual framework depicted in Figure 

8. The experimental framework from Figure 9 will therefore be utilized to address 
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research questions RQ1 through RQ4. Hypotheses that pertain to research questions 

RQ1 through RQ4 will be formed by using this framework.  

3.2 Research Scope 

3.2.1 Serial Propagation 

In section 2.6, I discussed three types of network propagation: parallel, serial and 

transfer (Borgatti, 2005). Of these, only parallel and serial propagation are applicable to 

social networks (section 2.6.1). In parallel propagation, one message can be passed from 

one node to many nodes simultaneously, whereas in serial propagation a message is 

passed from one node to one node at a time (Borgatti, 2005). Parallel and serial 

propagation can thus be respectively associated with broadcast communication (Katz 

and Lazarsfeld, 1955, Kotler, 1994) and word-of-mouth (Roger, 1983, Granovetter, 

1973) communication.  

In broadcast communication, which has been covered extensively in prior work 

(Kotler, 1994, Stewart and Ward, 1994, Rice, 1992, Rubin, 1984), information is 

propagated in parallel, i.e. to multiple people at once. Thus broadcast communication 

tends to be one sided. Advertisements printed in a newspaper, radio shows and 

television advertisement (Katz and Lazarsfeld, 1955, Kotler, 1994) are examples of 

parallel propagation.  
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By contrast, word-of-mouth communication transpires through serial flows. 

Information is passed from one person to another, one at a time, through a process of 

interaction (Roger, 1983, Granovetter, 1973). This form of communication has been 

recognized as “the world’s most effective, yet least understood marketing strategy” 

(Misner, 1999) because the Internet provides companies with more word-of-mouth 

marketing opportunities than ever.  In addition, word-of-mouth communication is 

significantly cheaper than many forms of broadcast communication, such as, for 

example, tossing away millions of dollars on Superbowl ads (Whitman, 2006).  As online 

social networks are virtual social aggregations in which information flows happen due to 

people interacting with each other by word of mouth (Knoke and Kuklinski, 1982, 

Wellman, 1983, Rheingold, 1993), I limit the scope of this dissertation to serial flows.  

3.2.2 Paths and Geodesics  

In section 2.6, I discussed four types of routes through which propagation 

happens: geodesics, paths, trails and walks. This dissertation will not deal with trails and 

walks for two reasons. First, calculating trails and walks can be very expensive in terms 

of time and compute power, especially in highly connected datasets (Kashima et al., 

2003, Gartner, 2002). Second, the impact of an actor’s ability to exert influence over 

other actors can be studied adequately by considering paths and geodesics.  Paths are 

used because the phenomena under study are serially based -- one actor will interact 

with only one other actor at one time. Therefore, paths will be used as proxy for 
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information spread process (explained in 4.3.3.2.2). Geodesics are the shortest paths 

between any two specific actors within the network. Therefore, geodesics will be used 

as proxy for speed of information spread (explained in 4.3.3.2.2). Influence could be a 

stronger function of paths than geodesics, or vice versa, or not correlated to either. To 

date, no study has determined which of these possibilities is correct. 

3.2.3 Directionality 

In graph theory, networks are classified as directional or non-directional. 

1. Non-Directional Network: This is a type of network in which all relations are 

symmetrical. If an actor A interacts with actor B, it is assumed that actor B also 

interacts with actor A (Wasserman and Faust, 1994). 

2. Directional Network: This is a type of network in which relations are not 

symmetrical. If an actor A interacts with actor B, it is not assumed that actor B 

interacts with actor A (Wasserman and Faust, 1994). 

In most extant analyses of social networks relationships have been treated as 

reciprocal (e.g., (Burt, 1976, Burt and Doreian, 1982, Granovetter, 1973). However, 

directionality has been a factor in some studies (e.g. (Allen, 1977, Roger, 1983) because 

relationships are not necessarily reciprocal. Thus directionality is taken into 

consideration in this dissertation.   

In order to further understand the role of interaction, I partition the interaction 

process into a consumption phase and a propagation phase, as shown below in Figure 
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10. In figure 10, A consumes information from B in the consumption phase, whereas A 

propagates information to B in the propagation phase.   

Figure 10: Information consumption and propagation flow 

 

 

 

The consumption and propagation phases only impact directional networks, as 

they are non-symmetrical. In non-directional networks, the consumption phase and the 

propagation phase are equivalent. Therefore, I will consider the consumption and 

propagation phases in directional networks separately to understand the impact of each 

phase on the influence of nodes and then collectively to understand their combined 

impact.  

3.3 Research Hypotheses 

The empirical study that has been proposed for this dissertation intends to 

determine whether the structure of a network formed due to a virtual social 

aggregation impacts the network flows within that network; whether the network flows 

associated with such a network impact the network’s structure; and whether network 
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structure and network flows affect the ability of an actor within a network to exert 

influence over other actors within the same network. This objective is achieved by 

addressing research gaps RG1 and RG2, as well as by answering research questions RQ1 

though RQ4. Directionality enters the hypotheses for reasons explained in section 3.2.3.  

The following hypotheses address the research question RQ1:  

 Hypothesis 1 (HP1): The structural characteristics of a social network impact its 

network flows.  

- Hypothesis 1a (HP1a): The structural characteristics of a non-

directional social network impact its network flows. 

- Hypothesis 1b (HP1b): The structural characteristics of a directional 

social network impact its network flows. 

- Hypothesis 1c (HP1c): The structural characteristics of a directional 

social network impact its network flows in the consumption phase. 

- Hypothesis 1d (HP1d): The structural characteristics of a directional 

social network impact its network flows in the propagation phase.  

The following hypotheses address the research question RQ2:  

 Hypothesis 2 (HP2): Network flows impact the structural characteristics of a 

social network. 

- Hypothesis 2a (HP2a): Network flows impact the structural 

characteristics of a non-directional social network. 
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- Hypothesis 2b (HP2b): Network flows impact the structural 

characteristics of a directional social network. 

- Hypothesis 2c (HP2c): Network flows impact the structural 

characteristics of a directional social network in the consumption 

phase. 

- Hypothesis 2d (HP2d): Network flows impact the structural 

characteristics of a directional social network in the propagation 

phase. 

The following hypotheses address the research question RQ3:  

• Hypothesis 3 (HP3): Network structure impacts influence within an online 

social network.  

- Hypothesis 3a (HP3a): Network structure impacts influence within an 

online social network in a non-directional social network.  

- Hypothesis 3b (HP3b): Network structure impacts influence within an 

online social network in a directional social network. 

- Hypothesis 3c (HP3c): Network structure impacts influence within an 

online social network in a directional social network during the 

consumption phase. 

- Hypothesis 3d (HP3d): Network structure impacts influence within an 

online social network in a directional social network during the 

propagation phase. 

 

 



www.manaraa.com

81 
 

The following hypotheses address the research question RQ4:  

 Hypothesis 4 (HP4): Network flow impacts influence within an online social 

network. 

- Hypothesis 4a (HP4a): Network flow impacts influence within an 

online social network in a non-directional social network.  

- Hypothesis 4b (HP4b): Network flow impacts influence within an 

online social network in a directional social network. 

- Hypothesis 4c (HP4c): Network flow impacts influence within an 

online social network in a directional social network during the 

consumption phase. 

- Hypothesis 4d (HP4d): Network flow impacts influence within an 

online social network in a directional social network during the 

propagation phase. 
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4. Research Methods 

In this chapter, I discuss issues related to research design, including the unit of 

analysis and the choice of research setting. I subsequently explain my approach to 

collecting data for the research I have conducted, and how to measure the variables 

described in chapter2. I also discuss the validity and reliability of the measures. At the 

end of this chapter, I describe my approach to data analysis.    

4.1 Research Design 

I am looking at social networks from the point of view of product categories. I 

would thus like to know whether the patterns in a social network (structure, 

information flows and loci of influence) vary as a function of product category. I am 

interested in scale in particular, because I would like to find out whether the social 

networks that discuss products categories in which content is consumed at high 

volumes behave differently from social networks that discuss product categories in 

which content is consumed at relatively low volumes. Therefore, scale becomes a 

control variable in my research design and the theoretical criterion for case selection. 

This is a population study. Due to modern data extraction capabilities on the 

Internet, I can study whole populations. Studying the population in its entirety not only 

eliminates the sample selection bias; it also ensures that the results observed are valid 

and generalizable to the entire population under study. This is especially important in 
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studies that involve networks, as selecting only a sample instead of the population can 

break a network into multiple small networks, leading to faulty results. Furthermore, my 

data collection method (see section 4.3) allows me to extract large amount of data from 

which statistically significant conclusions can be drawn. Quantitative analyses of 

network phenomena (influence), the impact of network attributes (network structure 

and network flow) on network phenomena, and the impact of network attributes on 

each other consequently become feasible.  

In my study, I use the case study research method to establish my experimental 

setting ((Yin, 1984), as cited by (Eisenhardt, 1989), p. 534). A product category that is 

discussed by a social network is considered a case. The social network that discusses the 

product category is my unit of analysis. The product category in each case will be 

sufficiently mature, so as to avoid any bias associated with startup effects. Conversely, 

the product category should not be in rapid decline, so as to avoid any bias that pertains 

to rapid decay of the social network under study.  

In general, case study research tends to deploy inductive reasoning and 

qualitative methods (Eisenhardt, 1989, Yin, 1994). However, when guiding propositions 

have been established, the case study research method can be used to confirm or reject 

these propositions (Yin, 1994) through deductive reasoning. In addition, quantitative 

methods have been used to identify common sequences of events in large samples (e.g., 

(Abbott, 1990)).  
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I have established specific hypotheses in section 3.3, which I would like to test 

under a particular set of circumstances that may change as events unfold. It is thus 

appropriate for me to conduct deductive research in which I confirm the existence of 

phenomena that have been proposed a priori.  

4.1.1 Research Setting 

A mentioned in section 1.2, Twitter conversations were chosen as a setting for 

this study because they exhibit the characteristics of online social networks, which 

contrast sharply with social networks that occur in the real world.  In addition, Twitter is 

the only social media platform that can capture changes in the context and content of 

online conversations at the rate at which they actually occur. Furthermore, all data on 

Twitter are available in the public domain.  Finally, Twitter is popular enough for it to 

cover a sufficient number of conversations to enable a comprehensive analysis of the 

product categories under study.  Twitter gets almost 190 million17 unique visits every 

month, which makes it the eighth most popular website in the world.  Over 1 billion 

tweets18 are generated on Twitter every 5 days.   

Twitter is a micro-blogging platform (Zhao and Rosson, 2009) founded in 2006. 

Microblogs are short comments usually delivered to a network of associates (Huberman 

et al., 2008). Microblogging is also referred to as micro-sharing, micro-updating, or 

Tweeting (Huberman et al., 2008). Tweeting directly impacts word of mouth 
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 http://preview.alexa.com/siteinfo/youtube.com (accessed on 04/09/2014) 
18

 http://www.statisticbrain.com/twitter-statistics/ (accessed on 04/09/2014) 

http://preview.alexa.com/siteinfo/youtube.com
http://www.statisticbrain.com/twitter-statistics/
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communication because it allows people to share thoughts almost anywhere (i.e., while 

driving, getting coffee, or sitting at their computer) to almost anyone “connected” (e.g. 

Web, cell phone, IM, email) on a scale that has not been seen in the past (Honeycutt 

and Herring, 2009). While the shortness of the microblog keeps people from writing 

long thoughts, it is precisely the micro part that differentiates microblogs from other 

word-of-mouth media, including full blogs, web pages, and online reviews (Ramage et 

al., 2010). A standard microblog is approximately the length of a typical newspaper 

headline and subheading (Milstein et al., 2008) which makes it easy to both produce and 

consume. (In Twitter’s case, a tweet is limited to 140 characters.) Tweets commonly ask 

for or share information, news, opinions, complaints, or details about daily activities.  

Tweets may include hyperlinks to news stories, blogs, pictures, videos, etc. Tweets show 

up in the stream of those following the poster of the tweet; most posts are also 

publically available.  

4.1.2 Case Selection 

Given that Twitter is the research setting, Twitter communities become the unit 

of analysis. A Twitter community formed around a specified YouTube product category 

forms a case, for which all hypotheses will be tested. Case selection in this study (like in 

many others) depends upon theoretical sampling and replication logic (Yin, 1994, 

Leonard-Barton, 1990). The key criterion for theoretical sampling is scale, primarily 

because community behavior may vary as a function of community size.  



www.manaraa.com

86 
 

4.1.2.1 Replication Logic 

Replication logic manifests itself by selecting two product categories from each 

level of distribution volume. All hypotheses will be tested in more than one case.  I will 

use the same input variables, moderating variables, control variables and output 

variables. However, I do not necessarily expect to get similar results from replication 

because social networks function autonomously. As explained in section 2.3, the 

relationship between the properties is only true within the contextual model; it may be 

false outside the contextual model (Borgatti and Kidwell, 2011). However, replication of 

cases “requires that the phenomenon being studied be defined by some characteristics 

common to all the research situations” ((Yin, 1984), as cited by Leonard-Barton, 1990, p. 

251). Thus, all cases in my research come from a common delivery platform—YouTube.     

Figure 11: Case Selection Process 
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4.1.2.2 YouTube  

YouTube product categories were chosen to identify Twitter communities, as 

shown in fig.11.  It is assumed that more popular product categories on YouTube will 

generate bigger communities on Twitter. This assumption will be tested during the 

analysis in chapter 5. 

The success of a product category delivered on YouTube depends on its 

“popularity” or distribution volume, which is generally measured by the total number of 

views per unit time (Xu et al., 2008). Theoretical sampling (Yin, 1984, Eisenhardt, 1989, 

Leonard-Barton, 1990) in my study consequently consists of choosing product classes 

that either have very high or relatively low distribution volumes, as well as some 

product classes of intermediate scale.  

YouTube was chosen as a delivery platform for this research because some of its 

product categories are an order of magnitude more popular than others. I consequently 

expect that the largest Twitter community in my sample will be much bigger than the 

smallest. Music, comedy, entertainment and sports have been identified as categories 

of interest on YouTube in the academic literature (Thelwall et al., 2012, Xu et al., 2008) 

as well as in industry reports. 19  “Music” has been rated to be the most popular 

category as it comprises of almost 31% of all videos. “Entertainment” has been slated to 

be the second most popular category with 14.59% of all videos.  Music and 
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 http://www.sysomos.com/reports/youtube/#categories (accessed on 04/09/2014) 

http://www.sysomos.com/reports/youtube/#categories
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Entertainment have consequently been chosen as cases in the “large” volume category. 

“Comedy” and “Sports” categories are in the middle range of popularity with each 

category comprising of almost 6% of all videos.  They will serve as cases in the 

“medium” category.  I also intend to analyze “Howto” and “Science” categories, as they 

lie on the lower end of popularity, comparatively, with each category comprising of only 

2.5% to 3% of overall videos.  

4.2 Data Collection 

I have conducted a retrospective study, and the data for this retrospective study 

was collected in continuous time. When data are recorded in a continuous time, the 

number and sequence of events and the duration between them can all be calculated. 

The main advantage of this approach lies in the greater detail and precision of 

information (Blossfeld and Rohwer, 1995). It also reduces time required to collect data, 

and it enhances the chances of recognizing the overall patterns (Leonard-Barton, 1990). 

Data on the conversations about the chosen product categories was collected on 

Twitter. Twitter data is easily available through application programming interfaces 

(API’s) from which the networks forming within a context can be easily deduced. For the 

sake of simplicity, I use keyword search as a means of finding contextual network 

(Jansen et al., 2009). Both, Twitter platform as data source and keyword search as data 

filter, have been used respectively in previous studies (Williams et al., 2013, Teevan et 

al., 2011, Jansen et al., 2009). 
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Tweets have a very unique character. In contrast to any other message, they are 

limited to 140 characters (Ramage et al., 2010). Every person or entity (like alias, 

company, etc…) is identified by its Twitter handle. Every Twitter handle can tweet. A 

Twitter handle can direct a tweet towards another Twitter handle by “@ mentioning” 

them. The recipient Twitter handle can either forward the message to its network by 

retweeting “RT @” the sender’s message, or reply to the sender by “@ mentioning” the 

sender’s Twitter handle. The recipient can choose to do neither. Tweets are time 

stamped and publicly displayed on the Twitter platform. 

Twitter generates almost than 1 billion tweets every 5 days. Therefore, in order 

to reach the relevant audience, it is important to weed out noise, which is classified into 

two categories: 

1. Contextual Noise: People have multiple topics of interest which may vary from 

the work that they do, their hobbies, their likes and dislikes, lifestyle choices, etc.  

Hence, they tweet about these multiple topics of interest. In order to identify a 

relevant social network, the context of conversations that is relevant to the 

business objectives (marketing, brand perception, customer support, etc…) 

needs to be identified. The remaining conversations fall under contextual noise. 

Contextual noise is very subjective and depends upon the business objective. 

Reducing contextual noise is achieved by using keyword searches. 

2. Broadcast Noise: After identifying the context, a social network forming within 

that context can be identified. In order to identify these networks, it is necessary 

to identify the relationships people form within the network. Relationships in 

this case are formed when people interact with each other. In this case, we 
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consider two actions that form relationships when they are tweeting somebody 

(@ mentioning) or retweeting somebody (RT @). The tweets that do not evoke 

any response, i.e., nobody interacts (@mentions or RT @), are considered 

broadcast noise.  

The removal of broadcast noise provides people engaged in the contextual 

conversation. Within the contextual conversation only the largest network of people 

(community) engaged in a collective conversation everyday will be considered for 

analysis. The distinction between the collective conversation and isolated conversations 

is shown in Figure 12 below.  A large group of people are engaged in a collective 

conversation, whereas small isolated groups converse on the side in isolated 

conversations.   

Figure 12: Collective vs. Isolated Conversations 
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The rate of participation in the largest network does not impact the size of 

network, but it does impact the volume of tweets associated with the largest network. 

Therefore, while considering the total number of people participating in the largest 

network, only the Twitter user names that participate on a particular day will be 

counted for that day. Even if the participants tweet more than once, they will still only 

be counted once as the ‘daily unique’. But while considering the total number of tweets, 

only the tweets associated with the largest network will be counted for analysis. Same 

process will be followed while measuring number of people participating on daily basis 

and tweet volumes on a daily basis associated with overall topic, broadcast and engaged 

activity within the overall topic.  

It is noteworthy to mention that the rate of interaction between two people may 

be seen as strength of their relationship, thereby defining strong ties and weak ties 

within a network. The changing values of the rate of interaction over a period of time 

can be used to define the dynamics of the relationship, i.e., are the relationships getting 

stronger or weaker. The impact of the rate of participation is out of scope for the thesis 

on hand. However, I identify impacts of rate of participation on network structure, 

network flow and network phenomenon as an area for future research. 

This data collection process will be used to obtain data for the topics mentioned 

above. Data has been gathered for a period of three months, from Dec31st, 2013 to 

March 31st, 2014. Metadata for all the chosen topics will consist of ‘Total_Tweets’, 

’Broadcast_Tweets’, ‘Engaged_Tweets’, ‘Community_Tweets’, ‘ Total_People’, 
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‘Broadcast_People’, ‘Engaged_People’ and ‘Largest_Community’. Definitions for the 

Metadata are shown in Table 7 below. 

Table 7: Definitions of Metadata 

 

The time period of data collection was chosen at random. A period of three 

months of data was chosen to control for any monthly periodicity in the data (Gonçalves 

and Ramasco, 2008, Meiss et al., 2008). The data has been analyzed in daily intervals, in 

order to capture tweet volatility patterns caused due to daily routine (Dodds et al., 

2011, Frank et al., 2013). For example, Twitter users in Tokyo tweet a lot less during 

working hours.20  The 24 hour started in accordance with Greenwich Mean Time (GMT). 

The details of the analysis, the variables and the measures are described in the next 

section. 
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 http://gigaom.com/2012/06/04/twitter-shows-when-we-tweet-and-explains-why-its-search-sucks/ 
accessed on 4/27/2014 

http://gigaom.com/2012/06/04/twitter-shows-when-we-tweet-and-explains-why-its-search-sucks/
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4.3 Variables and Measures 

Figure 13 shows the research framework along with the measures and variables 

that will be used for this research. This frame work consists of four types of variables: 1) 

independent variables that will used to measure the level of activity within a network; 2) 

moderating variables that measure the network structure and network flow; 3) 

dependent variables that measure the influence of an actor within a network; and 4) 

control variables, which impact the dependent variable.  

Figure 13: Research Framework with Variables 

 

The details about what these measures mean and how to measure them is discussed in 

the following sections. 
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4.3.1 Mathematical Preliminaries (Wasserman and Faust, 1994)  

The social network is the unit of analysis for this research; it will be viewed as a 

graph. In this section, I will explain the mathematical preliminaries from graph theory 

that is required to understand the variables and measures generated in subsequent 

sections.  

Let G be a network such that 

                                                     

G =  (V, E) … … … … (1) 

 

 

 where  

                                 V – is a finite and non-empty set of nodes  

Therefore, 

V =  {1, 2, 3, … . . N} 

and     

                                E – is a finite and non-empty set of ties 

 

Therefore, 

The tie (i,j) Є E is incident with nodes i and j. 

                                                   (i,j) Є E is a link, if i ≠j………………………………….(2) 

                                                   (i,j) Є E is a loop, if i = j………………………………..(3) 
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If two nodes are incident with the same tie, then they are adjacent. Adjacent 

nodes are called neighbors. Defining the N×N adjacency matrix A = (aij) by setting aij 

equal to 1 if (i, j) ∈ E, and 0 if not. Therefore, the adjacency matrix is a matrix 

representation of a graph displaying connectivity of the graph. The rows and columns of 

the graph are labeled by the nodes. If there is a tie between two nodes, then the tie is 

indicated in the matrix as 1; otherwise the link takes the value of 0.  This is also the first 

order adjacency matrix, i.e., it defines nodes that are connected directly.  The first order 

adjacency matrix does not define relations that are not direct. In order to do so, a higher 

order of adjacency matrices are required, which can be achieved by the multiplying the 

first order adjacency matrix with itself. For example, to identify nodes that have just one 

node between them, a first order adjacency is multiplied with itself. The resultant matrix 

is called the second order adjacency matrix. 

Similarly, Let “A” be an N×N adjacency matrix; then a degree matrix “D” is a 

second order adjacency matrix in which all the elements except the diagonal elements 

are non-zero. 

Then the second adjacency matrix is given by 

A2  (αI,j) = A1 × A1  … … … … … … . (4) 

Hence, an N×N degree matrix (D) is given by 
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D = A2  … … … … … … . . (5) 

 where    

αi,j =   αi,j … … … … … … . . (6) 

                                                  iff i=j and (i,j) ∈  A2   

                                    and   

αi,j = 0 … … … … … … … … . . (7) 

                                                             iff i ≠j and (i,j) ∈  A2    

4.3.2 Measuring Independent Variables 

        The independent variables in this research are the number of nodes, number of 

ties, clustering co-efficient, network density and reciprocity. Nodes and ties have been 

defined in section 4.3.1. In this section, I will define clustering co-efficient, network 

density and reciprocity and elucidate how these variables are measured.  

4.3.2.1 Clustering Coefficient 

Clustering is a typical property of acquaintance networks, where two individuals 

with a common friend are likely to know each other (Wasserman and Faust, 1994). The 

clustering coefficient was described by Watts and Strogatz, in context of social 

networking, as the degree to which the nodes in the graph cluster together (Watts and 
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Strogatz, 1998). Newman et al. also described clustering coefficient to be same as the 

transitivity of a graph and defined it as follows (Newman et al., 2002)  

                                     

C (G) =
3 ×  ∆(G)

τ(G)
… … … … (8) 

    

where  C(G) – clustering coefficient of the graph, 

                           ∆(G) – total number of triangles in the graph, and 

                            τ(G) - total number of connected triples in the graph. 

Calculating the total number of triangles: 

Let  A3- third order adjacency matrix of a graph.  

The diagonal elements of A3 contain elements that start from node i and after passing 

through 2 other nodes ends at the same node i. This can happen only if it is triangle.  

The diagonal element counts each triangle 3 times. Example:  triangle ijk is counted i to j 

to k and i to k to j. Thus every triangle is counted 6 times. 

Therefore, 

∆(G) =  
1

6 
∑ A3

i,j

n

(i,j)=1

 … … … … . (9) 

                    where i = j 
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Calculating total number of connected triples: 

Let           A2- Second order adjacency matrix of a graph 

The elements of A2 contain elements that start from node i and after passing through 2 

other nodes ends at the same node i or any other node in the network j. These are 

called connected triples. Thus every connected triple is counted 4 times.  

Therefore,  

τ(G) =  
1

4  
∑ A2

i,j

n

(i,j)=1

  … … … … . (10) 

                         where i ≠ j 

4.3.2.2 Density 

Graph density measures the fullness of a graph. It is a measure which looks at all 

the ties in the graph and compares it to the all the possible ties in a graph (Wasserman 

and Faust, 1994).  

Therefore,  

Density (D) =  
Total number of ties in a graph(E)

All possible ties in a graph (ET)
 … … … (11) 
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4.3.2.3 Reciprocity 

Reciprocity is an important characteristic of directed networks which helps 

quantify tendency of node pairs to form mutual connections with each other (Newman 

et al., 2002). Reciprocity is a ratio of bi-directional ties in the network to non-bi-

directional ties in the network. 

Therefore,  

   

Reciprocity =  
Total number of bi − directional ties in a graph(E)

Total number of non bi − directional ties in a graph(E)
… . . (12) 

4.3.3 Measuring Moderating Variables 

4.3.3.1 Network Structure (MV1) 

4.3.3.1.1 The Small World Measure 

A network G with n nodes and m ties is a small-world network (Watts and 

Strogatz, 1998), if it has a similar path length but a greater clustering of nodes than an 

equivalent random graph with the same number of nodes n and same number of ties m.  

A random graph is constructed by uniquely assigning each tie to a node pair with 

uniform probability (Bollobás, 1984). 

A key concept in defining small-world networks is that of ‘clustering’ (C (G)) 

which measures the extent to which the neighbors of a node are also interconnected. 
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This concept has been defined in section 4.3.2.1. The other key concept that pertains to 

network structure is path length, which has been defined as the minimum number of 

ties that must be traversed to get from one node to the other. By extension, the 

minimum path length between two nodes is the minimum number of ties that must be 

traversed to get from one node to the other (Fronczak et al., 2004). The mean value of 

the minimum path length over all node pairs will be denoted by Lg.  

More formally, let Lg be the mean path length of graph G and Cg its clustering 

coefficient. Let Lgr and Cgr be the corresponding mean path length and clustering co-

efficient for a random graph. Then a network is said to be a small world network if SM is 

greater than 1, 

where                                           

SM =  
Csm

Lsm
 … … … . . (13) 

                                            such that SM>1   

where                                       

Csm =  
Cg

 Cgr
… … … . . (14) 

                                                        such that Cg >>Cgr  

and where  

        Lsm =  
Lg

 Lgr
… … … . (15) 
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                                             such that Lg ≥Lgr  

4.3.3.1.2. Scale Free Measure 

In order to understand the scale free structure of the network and quantify the 

level of scalefreeness displayed by the network, Li et al. proposed the S-metric (Li et al., 

2005), which is defined as follows:   

    

s(g) =  ∑ di 

(i,j)∈G

dj … . . (16) 

where  

                                            di  , dj denote the degree of node i and node j. 

The value of s(g) depends explicitly on the graph and not the process through 

which it is constructed. The s(g) metric measures the extent to which the graph G has a 

hub like structure as the value of s(g) is maximized when nodes with high degrees are 

connected to each other. Similarly, s(g) takes a lower value when the nodes with high 

degree are connected to nodes with low degree. Therefore, when value of s(g) is high, 

the graph is scale free, and the value of s(g) is low, the graph is scale rich. 

We can compute s(g) with respect to any “background” set G of graphs. 

Moreover, for any background set, there exists a graph whose connectivity maximizes 

the s-metric and is referred to as “smax graph”. The smax graphs for different 
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background sets are of interest since they are essentially unique and also have the most 

“hub-like” core structure. Therefore, smax value can be used for normalizing s(g) value 

between 0 and 1 as shown below. 

                                               

S =  
s(g)

smax
… … … … … . (17) 

This also means smax has to be generated for every degree sequence that results 

from each trial. Constructing the smax element among these graphs can be achieved 

trivially, by applying the following two-stage process. First, for each vertex i, if di  is 

even, then attach di  /2 self-loops; if di  is odd, then attach (di   − 1)/2 self-loops, leaving 

one available “stub”. Second, for all remaining vertices with “stubs”, connect them in 

pairs according to decreasing values of di. Obviously, the resulting graph is not unique, 

as the smax  element (indeed, two vertices with the same degree could replace their 

self-loops with connections between one another). Nonetheless, this construction does 

maximize s(g), and in the case when di   is even for all i ∈  V, one achieves an smax graph 

with  

   smax = ∑
𝑑𝑖

2

𝑛

𝑖=1

 . 𝑑𝑖
2 … … … … (18) 

In the case where some di are odd, the smax  graph will have a value of s(g) that 

is somewhat less than smax, and will depend on the specific degree sequence. Thus, the 
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value of smax represents an idealized upper bound among unconstrained graphs, but it 

can only be realized in the case when all vertex degrees are even. 

Scale Free (SF) graphs are defined as graphs with scaling or power law degree 

distributions. They are generated by a stochastic construction mechanism that is based 

on incremental growth (i.e. nodes are added one at a time) and preferential attachment 

(i.e. nodes are more likely to attach to nodes that already have many connections). The 

main properties of SF graphs that appear in the existing literature can be summarized 

as: 

1. SF networks have scaling (power law) degree distribution (Barabási and 

Albert, 1999). 

2. SF networks can be generated by a variety of random processes, foremost 

among which is preferential attachment. (Albert and Barabasi, 2000). 

3. SF networks have highly connected “hubs” which “hold the network 

together” and give the “robust yet fragile” feature of error tolerance, but 

attack vulnerability (Albert et al., 2000, Alderson and Willinger, 2005).  

4. SF networks are generic in the sense of being preserved under random 

degree preserving rewiring (Doyle et al., 2005). 

5. SF networks are self-similar (Itzkovitz et al., 2005). 

6. SF networks are universal in the sense of not depending on domain-

specific details (Itzkovitz et al., 2005). 
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4.3.3.1.3. Assortativity 

The measure r(g) of assortativity in networks was introduced by Newman (2002), 

who describes assortative mixing (for r > 0) as “a preference for high-degree vertices to 

attach to other high-degree vertices” and disassortative mixing (for r < 0) as the 

converse, where “high-degree vertices attach to low-degree ones.” (Newman, 2002)          

Assortativity has been developed in the context of an ensemble of graphs, but Newman 

provides a sample estimate of assortativity of any given graph g. Using our notation, 

Newman’s formula can be written as: 

  

r(g) =
[∑ didj(i.j)∈E ] −

[∑
1
2i∈V  di

2]
2

l

[∑
1
2i∈V  di

3] −
[∑

1
2i∈V  di

2]
2

l

… … … … … … . . (19) 

where,  

                            l - number of ties in the graph.   

Conceptually, r(g) and s(g) have the same aim, but with different and largely 

incomparable normalizations, both of which are interesting. The first term in the 

numerator is the same as s(g). The first term in the denominator is same as smax. The 

second term in both numerator and denominator can be interpreted as the “center” or 

zero assortativity case. Thus, the perfectly assortative graph can be viewed as the smax 

graph (within a particular background set G), and the assortativity of graphs is measured 
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relative to the smax graph, with appropriate centering. Therefore, the assortative 

measure is linearly related to the scale free measure. The assortative measure helps in 

understanding the connection preference within a graph, whereas the scale free 

measure helps in understanding the formations of hubs.  

4.3.3.1.4. Power Law Distribution of Total Paths per Node and Total Shortest Paths 

per Node 

Social networks have been characterized by power law distribution of 

connections (Castellano et al., 2009, Muchnik et al., 2013b, Barabási and Albert, 1999, 

Barabási and Bonabeau, 2003).  This means that a node in a network that is most 

connected has at least twice as many connections than the node that is second most 

connected. Mathematically it is expressed as  

                                                             

P(x) ∝ x−α … … … … . (20) 

 

                   where                 P(x) is the probability distribution 

                                                         α is the scaling parameter 

Usually, many empirical measures cluster around a typical value, for example 

average height of an American. Even the largest deviations, which are exceptionally 

rare, are still only about a factor of two from the mean in either direction and hence the 
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distribution can be well-characterized by quoting just its mean and standard deviation. 

However, not all distributions fit that pattern and those that do not fit are considered 

defective due to presence of data outliers (Clauset et al., 2009). In this case though, the 

data not fitting the standard pattern of mean and standard deviation leads to 

interesting characteristics  like scale free structure in a network, as seen in section 

4.3.3.1.2.  

The scale free measure is a network level metric, that assess power law 

distribution of node connectivity (connections per node in the network). However, the 

scale free measure throws no light on the distribution of paths or the shortest paths 

amongst the nodes in a network, which explain the process of information spread and 

information speed (explained in 4.3.3.2.2). It is possible for a node to have low 

connectivity and still be responsible for large number of paths and shortest paths as 

shown in fig.14.  

Figure 14: Power Law Distribution of Paths in a Network 

 

Consider the directed network shown above in fig.14, A is connected to B, C, D. B 

is connected to E, F, G, H. C is connected to I. D is connected to J, K, L, M. B and D are 
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more connected than A but A forms more number of paths than either B or D. Paths 

formed by A are A-B, A-C, A-D,  A-B-E, A-B-F, A-B-G, A-B-H, A-C-I, A-D-J, A-D-K, A-D-L, A-

D-M. Paths formed by B are B-E, B-F, B-G, and B-H. Paths formed by D are D-J, D-K, D-L, 

and D-M. Therefore, distribution of connectivity vs paths differs in a network. 

In order to account for this structural characteristic of the network, I consider 

power law distribution of paths per node and power law distribution of shortest paths 

per node. These measures are experimental, as I have not come across any literature 

that states about the distribution paths and the shortest paths amongst nodes across 

networks and its impact. The relationship between the scale free metric of a network 

and the power law distribution of paths per node and power law distribution of shortest 

paths per node will be tested during the analysis in chapter 5. Also, in order to 

understand the relationship between power law distribution of paths per node and 

power law distribution of shortest paths per node with influence of node, power law 

distributions of eigenvector centrality (section 4.3.4.3) will be tested. 

4.3.3.2 Network Flow (MV2) 

The adjacency matrix provides information about the number of paths that exist 

in a graph (Wasserman and Faust, 1994). The order of the adjacency matrix conveys 

information about number of paths that exist in a graph with a particular path length 

(Wasserman and Faust, 1994). The path length is defined as number of nodes travelled 

to reach the destination node from the source node (Fronczak et al., 2004). The order, 
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at which the calculation needs to stop, since all nodes are accessible to each other in the 

graph, is dictated by the diameter of the graph. A diameter of a graph is the longest 

shortest path required to connect any two nodes (Wasserman and Faust, 1994). In this 

section, I show the basics behind calculating metrics that pertain to network flow. These 

include the graph diameter (Shimbel, 1953), the number of geodesics, the number of 

paths, the length of the average geodesics and the average path length (Fronczak et al., 

2004). 

4.3.3.2.1 Shimbel Matrix (graph diameter) (Shimbel, 1953) 

A Shimbel Matrix is a simple adaptation of the Adjacency Matrix. It holds the 

shortest path between nodes of a network, which is either lesser than or equal to the 

diameter of the graph. The Shimbel Matrix is constructed as shown in Figure 15: 

Figure 15: First Order Shimbel Matrix 

 

The First Order Shimbel Matrix is constructed from the First Order Adjacency 

Matrix, where all direct links are kept. The number 1 in the Shimbel Matrix indicates 

that the shortest path is of 1st order (path length is 1). The diagonal elements are 
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assigned the valued of 0 as shortest distance between a node and itself is 0. The cells 

which have a value of 0 in the  A1 matrix are left blank as the shortest path between 

those nodes is yet to occur. 

Figure 16: Second Order Shimbel Matrix 

 

The Second Order Shimbel Matrix is built from the empty cells of the First Order 

Shimbel Matrix and the Second Order Adjacency Matrix. A value of 2 is assigned to the 

empty cells of  D2 for which the corresponding value in  A2 are greater than 0. The 

number 2 in the Shimbel Matrix indicates that the shortest path of 2nd order (path 

length is 2). Since, all the cells in  D2 are occupied, we have identified that the highest 

path length of shortest paths in the graph is 2. Therefore, the diameter of the graph is 2.  

4.3.3.2.2 Metrics for Network Flow (Fronczak et al., 2004)  

In order to identify all the shortest paths, the Adjacency Matrix and the Shimbel 

Matrix need to be compared, as shown below:   
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Figure 17: Identifying the Shortest Paths 

 

The Shimbel Matrix gives the shortest path orders, and the Adjacency Matrix 

gives the total number of paths with specific path lengths. In  P1 we identify the shortest 

path of 1st order and in  P2 we fill the empty cells of  P1 with the shortest path of 2nd 

order. For example, consider the cell (A,E) in the P2 matrix.  A2 indicates that the cell 

(A,E) has 1 path,  D2 indicates that the path from AE is of 2nd order. Therefore (A, E) in 

 P2 takes the value of 1, indicating that there exists one shortest path, which is of the 

second order between (A, E). The overall sum gives us the total number of shortest 

paths (geodesics) in the graph, which in this case are 22. The elements of  P2 convey the 

total number of shortest paths (geodesics) that exist between any two nodes. The 

shortest paths in  P2 show the speed with which all the nodes in the network can be 

reached. This defines the process of speed of information spread. 
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By adding all the values in  A1 and  A2 gives us the total number of paths in the 

graph, as shown below:  

Figure 18: Total Paths 

 

Therefore, the total number of paths in the graph is 33. The total paths show in how 

many ways the information from one particular node can reach the any other node in 

the network. This defines the information spread process. 

The Average Geodesic Length (AGL) and the Average Path Length (APL) can be 

easily calculated by respectively dividing the total number of geodesics and the total 

number of paths by the number of nodes in the graph. 

- AGL = 22/5 = 4.4……………………(21) 

-  APL =32/5 = 6.6……………………(22) 
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Average geodesic length and average path length are measures of ease of 

accessibility of nodes with a network through the speed and spread process. 

4.3.4 Measuring the Dependent Variables 

In section 2.6, the literature on eigenvector centrality and its role as the metric 

of influence (dependent variable), was discussed at length. It was also noted that 

centrality is an attribute of an actor, and centralization is a network. In the following 

section, I will describe how eigenvector centrality and eigenvector centralization are 

measured. 

4.3.4.1. Measuring Eigenvector Centrality (Freeman, 1979) 

Eigenvector centrality is a measure of the importance of a node in a network. It 

assigns relative scores to all nodes in the network based on the principle that 

connections to high-scoring nodes contribute more to the score of the node in question 

than equal connections to low-scoring nodes. Eigenvector centrality acknowledges that 

not all connections are equal. In general, connections to people who are themselves 

influential will lend a person more influence than connections to less influential people. 

Denote the centrality of vertex “i” by " xi"; then we can allow for this effect by 

making xi, proportional to the average of the centralities of i’s network neighbors: 
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 xi =
1

λ
∑ Aij

n

j=1

xj … … . . (23) 

                                    where 𝜆 denotes a constant 

Defining the vector of centralities x = (𝑥1, 𝑥2,…), we can rewrite this equation in matrix 

form as 

λ x =  A. x … … … . (24)  

We see that x is an eigenvector of the adjacency matrix with eigenvalue ʎ. If we 

wish the centralities to be non-negative, then ʎ must be the largest eigenvalue of the 

adjacency matrix and x the corresponding eigenvector. 

The eigenvector centrality defined in this way accords each vertex a centrality 

that depends both on the number and the quality of its connections: having a large 

number of connections still counts for something, but a vertex with a smaller number of 

high-quality contacts may outrank one with a larger number of mediocre contacts. 

As explained in section 3.2.2 and section 4.3.3.2.2, I am measuring two different 

processes within the network, information spread and speed of information spread. 

Total paths and Total Shortest Paths are respectively used as proxies for information 

spread and speed of information spread. Therefore, the correlation coefficient of 

eigenvector centrality with total paths and total shortest paths will be used as a measure 

of influence with respect to information spread and speed of information spread 

processes. 
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4.3.4.2. Measuring Eigenvector Centralization (Freeman, 1979) 

Freeman (1979) also showed that the eigenvector centrality measures can be 

used to calculate network centralization as follows: 

1. Compute the eigenvector centrality for each node in the network to determine 

the largest value. 

2. Subtract each node’s centrality from the largest centrality value within the 

network and sum the difference. 

3. In a highly centralized network the sum of difference will be large; the sum of 

difference will be small in a less centralized network. 

4. The measure is normalized by dividing the sum-of-difference value of the 

network under investigation with the largest possible value for the sum-of-

difference in a network of equal size. This normalizes the value to a number 

between 0 and 1. 

4.3.4.3. Power law distribution of Eigenvector Centrality per Node  

In order to assess the effect of power law distribution of total paths per node 

and total shortest paths per node (section 4.3.3.1.4) on the influence of nodes within a 

network, I generate a power law distribution of eigenvector centrality, which will be 

compared with the network structure and network flow variables in analysis. 
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4.3.5 Control Variables 

A large volume of research has been devoted to the development of algorithmic 

methods to analyze social networks (Danon et al., 2005). Nearly all of these methods 

have one thing in common: they are intended for the analysis of undirected network 

data. The common approach to analyzing social networks in directed networks has been 

simply to ignore the tie directions and apply algorithms designed for undirected 

networks (Leicht and Newman, 2008). This works reasonably well in some cases, 

although in others it does not. Even in the cases where it works, however, it is clear that 

in discarding the directions of ties a good deal of information about network structure is 

lost. This information could, at least in principle, allow us to make more accurate 

determinations about the nature of the social networks under study (Leicht and 

Newman, 2008). Therefore, I will consider the undirected and directed versions of the 

network. The directed network will be further analyzed considering only the information 

consumption patterns and information propagation patterns, as explained in section 

3.2.2. These form the network constraints that will be used as control variables. Every 

network to be analyzed will be analyzed four times in the following forms:  

1. Non-Directional Network 

2. Directional Network 

3. Information Consumption 

4. Information Propagation 
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5. Scale 

As explained in section 4.1, I would like to find out whether the social networks 

that discuss product categories in which content is consumed at high volumes behave 

differently from social networks that discuss product categories in which content is 

consumed at relatively low volumes. Therefore scale becomes a control variable in my 

research design.  

In the following sections, I will discuss these issues in detail. 

4.4 Validity and Reliability  

In this study, I will conduct empirical research for hypotheses testing. The 

variables and measures used in this research are discussed in this section. It is important 

in hypothesis testing that type one error (α- error) and type two error (β- error) are 

eliminated. The α- error and the β- error are defined as follows: (Montgomery, 2008) 

1. α- error: The study results lead to the rejection of null hypothesis even though 

it’s true. 

2. β- error: The study results lead to the acceptance of null hypothesis even though 

it’s false. 

Also, in order for the research to be viable, it is important to show the validity 

and reliability of the research design. The criteria that determine the validity of a 

research design are defined as follows: 
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1. Construct Validity: The degree to which both the independent and dependent 

variables accurately reflect or measure the constructs of interest. (Judd et al., 

1991)  

2. Criterion Validity:  The extent to which one measure estimates or predicts the 

values of another measure or quality. (Cooper and Emory, 1995) 

3. Reliability: The degree to which hypotheses are homogeneous and reflect the 

same underlying constructs. (Cronbach, 1990) 

4.4.1. Eliminating α- error and β- error 

In principle, one can compute any network measure for any network that is built 

on the basis of empirical data. Many conclusions can be drawn based on these network 

measures. Unfortunately, one cannot be confident that the network measure that has 

been computed is a true reflection of the network’s structural features or a random 

variation. In order to overcome this predicament, Erdös and Rényi (1959) proposed 

comparing the network and the network measures of the network in question to the 

network and the network measures of a randomly generated network with same 

number of nodes and ties such that the every tie is chosen with equal probability (Erdös 

and Rényi, 1959).  

This method is very similar to testing a mean using z-test. In a z-test, a sample of 

data is taken where the value of each data point is considered a random value. One 

single mean is calculated for the sample and every random value is compared with this 

mean. The mean in question here is the expected value. If the random value is different 
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from the expected value, then one rejects the hypothesis that the true mean is equal to 

expected mean. In case of a network the random values are the ties. A single network is 

observed and the network measures are calculated for this network. These network 

measures are compared with the expected network measures of a network in which 

every tie has an equal probability. If the expected and the random network measures 

are different, then one can conclude that random network has different characteristics 

than the expected network. In case the network measure is non-existent for the 

network in question, then the network is considered to be random. 

This method also prevents one from drawing the wrong conclusions because of a 

lack of reference point. For example, let’s consider a network A with a clustering 

coefficient of 0.25 and a network B with a clustering coefficient of 0.5. It is easy to 

conclude that network B is highly clustered as compared to network A because 0.5 is 

greater than 0.25. But it may be that network A may have a higher clustering coefficient 

than one would expect in a random network, whereas network B has a clustering 

coefficient that is same as that of a random network. As a result, one can consider the 

cluster coefficient of network A as a true network feature and the clustering coefficient 

of network B as same as one might observe in a random network. 

Kejzar et al. used such networks as the basis for modeling the dynamics of 

acquaintanceships (Kejzar et al., 2008). Donninger used this approach to derive the 

distribution of degree centralization (Donninger, 1986). Anderson et al. used it to 
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simulate the distribution of degree and betweenness centralization (Anderson et al., 

1999).  

Therefore, in order to do meaningful comparisons of a network measure and 

eliminate α- error and β- error, I generate an Erdös-Rényi (E-R) random network which 

has the same number of nodes, the same number of ties and the same density. The 

networks that have similar clustering coefficient as a random network will be considered 

to have formed due to random process. 

4.4.2. Construct Validity 

The construct validity represents the degree to which both the independent and 

dependent variables accurately reflect or measure the constructs of interest (Judd et al., 

1991).  In hypothesis testing both the independent variables and the dependent 

variables should be decided prior to doing the analysis, so as to know how to measure 

them (Judd et al., 1991). Researchers can choose to use existing measurement scales, 

conduct exploratory preliminary studies, make theoretical considerations, or draw on 

experiences from practice (Judd et al., 1991). Using existing scales has been 

recommended, as it has added advantage of being able to compare results with 

previous studies in the same field (Judd et al., 1991). This research will use preexisting 

scale of measurement for all variables, as described in section 4.3. This study will also 

undertake factor analysis to assess construct validity (Cooper and Emory, 1995).  
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4.4.3. Criterion Validity 

A criterion is a measure used to determine the accuracy of a decision. In 

psychometrics, criterion validity is a measure of how well a variable or a set of variables 

predicts the outcomes based on data from other variables (Murphy and Davidshofer, 

1991, Pennington, 2003). Criterion validity measures the degree to which the predictor 

is adequate in capturing the relevant aspects of the criterion (Cooper and Emory, 1995). 

The correlation between the predictor and a measure of the outcome (or the criterion) 

provides an overall measure of the accuracy of predictions. The correlation between the 

predictor scores and criterion scores can be considered as a measure of the validity of 

decision (Murphy and Davidshofer, 1991). To confirm the criterion-related validity, a 

researcher can use correlation (Cooper and Emory, 1995). Therefore, this study will 

undertake correlational analysis to measure criterion validity.  

4.4.4. Reliability 

Cronbach’s alpha will be used as a measure of internal consistency and by 

implication as a measure of reliability. Cronbach's alpha can be described as the number 

of test items and the average inter-correlation among the items (Cronbach, 1990). A 

commonly accepted rule of thumb for describing internal consistency using Cronbach's 

alpha is as follows: 
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Table 8: Cronbach Scale for Internal Consistency 

Cronbach's alpha Internal consistency 

α ≥ 0.9 Excellent (High-Stakes testing) 

0.7 ≤ α < 0.9 Good (Low-Stakes testing) 

0.6 ≤ α < 0.7 Acceptable 

0.5 ≤ α < 0.6 Poor 

α < 0.5 Unacceptable 

 

Hair et al. (Hair et al., 1998) and Field (Field, 2005) suggested the value of 

Cronbach’s alpha should be higher than .70 for a reliable scale. The threshold value may 

decrease to .60 in exploratory research (Hair et al., 1998). Though a "high" value of 

alpha is often used as evidence that the items measure an underlying (or latent) 

construct, it does not imply that the measure is one-dimensional (Cortina, 1993). 

Therefore, factor analysis will be used to measure the dimensionality of variables.  

4.5 Data Analysis 

The key objective of this dissertation is to understand the impact of network 

structure and network flows on each other and their impact on the network 

phenomenon of influence. In previous sections, I have shown the model, the variables 

and the measures that will be used. In section 4.4, I have provided justification to ensure 

validity and reliability.  In this section, I shall discuss the data analysis methods to be 

used.  
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4.5.1 Correlation Analysis 

To assess the degree of interdependence between variables, this study will 

consider both correlation coefficient and statistical significance. Pearson’s correlation 

coefficient is the most common measure of effect size. It is controlled to lie between -1 

and 1 (Field, 2005). The effect size provides an objective measure between variables. 

The correlation matrix will be extremely useful for getting an idea of the relationships 

between dependent variables and independent variables. In this study, I will use two-

tailed tests for statistical significance analysis of Pearson’s correlation coefficient 

because the direction of moderating variables may have and positive or negative impact 

on the dependent variable. One -tailed tests are used when there is a specific direction 

to the hypothesis being tested, and two-tailed tests should be used when a relationship 

is expected, but the direction of the relationship is not predicted (Field, 2005). 

4.5.2 Exploratory Factor Analysis 

The goal of exploratory factor analysis is to find the smallest number of 

interpretable factors that can adequately explain the correlations among a set of 

variables (Field, 2005, p. 619). Items that are grouped together are presumed to be 

measuring the same underlying construct (Kerlinger and Lee, 1964). Exploratory factor 

analysis is a useful tool for understanding the dimensionality of a set of variables and 

also for isolating variables that do not represent the dimensions (Field, 2005, pp.622). It 

is extremely helpful during pilot work in the development of a set of items as all 
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loadings are free to vary. This analysis will be conducted using varimax rotation as the 

rotation procedure. A Scree test (Cattell, 1965) will then be conducted to produce a 

more interpretable solution. Factors need to explain at least 80% of cumulative 

variance. The factors will be examined and given a descriptive title that represented the 

characteristics of the constructs. 

4.5.3 Regression Analysis 

This study intends to use linear regression analysis, because regression analysis 

helps determine the relative impact of the independent variables on the dependent 

variable. To provide a statistical test of the model’s ability to predict the dependent 

variables, the value R square and the adjusted R square will be used (Field, 2005, 

pp.179). 

R-squared is a statistical measure of how close the data is to the fitted regression 

line. It is also known as the coefficient of determination. The definition of R-squared is 

fairly straight-forward; it is the percentage of the response variable variation that is 

explained by a linear model. 

𝑅2 =
Explained variation 

Total variation
… … … … (25) 

R-squared is always between 0 and 100%. 0% indicates that the model explains 

none of the variability of the response data around its mean. 100% indicates that the 
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model explains all the variability of the response data around its mean. In general, the 

higher the R-squared, the better the model fits.  

The adjusted R square can be used to assess how well the model is able to 

predict the outcome in a different sample. Field mentions cross-validation is a way to 

assess the accuracy of a model across different samples (Field, 2005 p. 171). In 

regression, the value of adjusted R square should be very close to the value of R square.   

Table 9 below presents abbreviations of all the variables. In following sections an 

‘x’ is added in place of ‘ud’, ‘d’, ‘in’ or ‘out’ to any of the variables mention below to 

indicate the applicability of the variable to all (undirected, directed, consumption and 

propagation) networks. 
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Table 9: Variables Definitions21 

Variable Explanation 

Nodes Number of nodes in a network 

Edges_ud  Number of ties in a undirected network 

Edges_d  Number of ties in a directed network 

Reciprocity Reciprocal ties in a directed network 

Den_ud Density of an undirected network 

Den_d Density of a directed network 

CC_ud Clustering coefficient of an undirected network 

CC_d Clustering coefficient of a directed network 

GD_ud Graph diameter of an undirected network 

Tpaths_ud Total paths in an undirected network 

TSpaths_ud Total shortest paths in an undirected network 

AvgPL_ud Average path length in an undirected network 

AvgGL_ud Average geodesic length in an undirected network 

GD_d Graph diameter of a directed network 

Tpaths_d Total paths in a directed network 

TSpaths_d Total shortest paths in a directed network 

AvgPL_d Average path length in a directed network 

AvgGL_d Average geodesic length in a directed network 

S_ud Scale free metric for an undirected network 

S_d Scale free metric for a directed network 

S_con Scale free metric for a consumption network 

S_pro Scale free metric for a propagation network 

R_ud Assortativity of an undirected network 

R_d Assortativity of a directed network 

R_con Assortativity of a consumption network 

R_pro Assortativity of a propagation network 

SMSP_ud Small world metric for an undirected network 

SMSP_d Small world metric for a directed network 

PL_TpudN Power law distribution of total paths per node in an undirected network 

PL_TpdN Power law distribution of total paths per node in a directed network 

PL_TpinN Power law distribution of total incoming paths per node in a 
consumption network 

PL_TpoutN Power law distribution of total outgoing paths per node in a 

                                                           
21

 The terms “edges” and “ties” are used interchangeably in graph theory. The word “ties” is preferred in 
this dissertation. However, the word edges appears in some aspects of statistical analysis. For example, in 
Table 9 and henceforth the variables Edges_ud and Edges_d refer to ties.  
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propagation network 

PL_TSpudN Power law distribution of total shortest paths per node in an undirected 
network 

PL_TSpdN Power law distribution of total shortest paths per node in a directed 
network 

PL_TSpinN Power law distribution of total shortest incoming paths per node in a 
consumption network 

PL_TSpoutN Power law distribution of total shortest outgoing paths per node in a 
propagation network 

ECud Eigenvector centralization in an undirected network 

ECd Eigenvector centralization in a directed network 

ECin Eigenvector centralization in a consumption network 

ECout Eigenvector centralization in a propagation network 

PL_EVCudN Power law distribution of eigenvector centrality per node in an 
undirected network 

PL_EVCdN Power law distribution of directed-eigenvector centrality per node in a 
directed network 

PL_EVCinN Power law distribution of in-eigenvector centrality per node in a 
consumption network 

PL_EVCoutN Power law distribution of out-eigenvector centrality per node in a 
propagation network 

EVCud_TpudN Correlation coefficient of eigenvector centrality vs. total paths per node 
in an undirected network 

EVCd_TpdN Correlation coefficient of directed-eigenvector centrality vs. total 
directed paths per node in a directed network 

EVCin_TpinN Correlation coefficient of in-eigenvector centrality vs. total incoming 
paths per node in a consumption network 

EVCout_TpoutN Correlation coefficient of out-eigenvector centrality vs. total outgoing 
paths per node in a propagation network 

EVCud_TSpudN Correlation coefficient of eigenvector centrality vs. total shortest paths 
per node in an undirected network 

EVCd_TSpdN Correlation coefficient of directed-eigenvector centrality vs. total 
shortest directed paths per node in a directed network 

EVCin_TSpinN Correlation coefficient of in-eigenvector centrality vs. total shortest 
incoming paths per node in a consumption network 

EVCout_TSpoutN Correlation coefficient of out-eigenvector centrality vs. total shortest 
outgoing paths per node in a propagation network 

CCudran Clustering coefficient of an undirected random network (E-R network) 

CCdran Clustering coefficient of a directed random network (E-R network) 
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5.  Analysis and Results 

Data was collected on Twitter for the six product categories described in section 

4.1.2.2; using the data collection process described in section 4.2.  In this chapter, the 

results of the study conducted for this dissertation will be explained. This chapter is 

divided into 6 sections. In section 5.1, I start by providing an overview of metadata 

(described in section 4.2). I start the analysis process by testing the assumption made in 

section 4.1.2.2:  the more popular product categories on YouTube will generate bigger 

communities on Twitter. In Section 5.2, I provide an overview of the daily patterns seen 

in the independent variables, moderating variables and dependent variables. Section 

5.3, discusses whether the networks formed are random or not, in order to eliminate α- 

error and β- error, as explained in section 4.4.1. In Section 5.4, findings pertaining to 

factor analysis and correlation analysis are provided. In Section 5.5, findings pertaining 

to regression analysis that address RQ1, RQ2, RQ3 and RQ4 are provided. 

The detailed overview, descriptive statistics of independent variables, 

moderating variables and dependent variables for all six product categories for 

undirected, directed, consumption and propagation networks are provided in case 

reports shared in Appendix A. The case reports also contain statistical analysis for the 

chosen product categories (correlation analysis, factor analysis and regression analysis) 

for the undirected, the directed, the consumption and the propagation networks. 
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5.1 Overview of Metadata 

Table 10: Metadata Overview 

 

As shown in Table 10, the six chosen cases were categorized based on their 

popularity. They were binned into three categories: high, medium and low. (Definitions 

for the Metadata are shown in Table 8 (section 4.2).) Table 10 shows cumulative 

numbers for Total Tweets, Broadcast Tweets, Engaged Tweets, Community Tweets and 

also Total People, Broadcast People, Engaged People and Largest Community over a 

period of 91 days (31/12/2013 to 31/03/2014). Total Tweets and Total People show the 

total number of tweets collected and the total daily unique people involved in these 

tweets respectively. Broadcast Tweets and Broadcast People respectively show the total 

tweets that were categorized as broadcast and total daily unique people involved in the 

broadcast activity. The definition of broadcast is provided in section 4.2. Engaged 

Tweets and Engaged People respectively show total tweets in which a conversation was 

happening and total number of daily unique people involved in conversations. Finally, 

Community Tweets and Largest Community show all tweets and people engaged in 

collective conversations. Distinction between collective conversation and isolated 

conversation is described in section 4.2. Their daily values are shown in Appendix A.   
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As per assumption from section 4.1.2, products categorized as high were 

supposed to generate communities that were bigger in size, both in terms of number of 

tweets and people involved, than products that were categorized medium or small. As 

seen from the Table 10 above, this assumption does not hold true. The “Entertainment” 

category, which was categorized as “high” based on YouTube popularity, generated 

43,377 total tweets whereas the “Comedy” category, which was categorized as medium, 

generated 94,111 total tweets over the same period of time.  Similarly, the “Sports” 

category generated more tweets than the “Entertainment” category. This trend can also 

be seen for the community sizes, of “Comedy” and “Sports”, both in terms of number of 

tweets and people involved. “Comedy” and “Sports” had a larger number of community 

participants as compared to “Entertainment” community.  

The tweets collected show a daily pattern of tweeting. For example, Figure 19 

below shows an hourly pattern for data collected in “Music” category between 21st Jan, 

2014 to 27th Jan 2014.  
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Figure 19: Hourly Patterns of Tweets between 21st Jan, 2014 to 27th Jan, 2014 in Music Category 

 

From Figure 19 it can be clearly seen that the tweets have a recurring pattern on 

a 24-hour basis with the exception of a few bumps on Jan. 24th and Jan.27th.  These 

bumps are associated with the following events: 

 24th Seoul Music Awards - 22nd Jan, 2014 

 59th Filmfare Awards - 24th Jan, 2014 

 56th Annual Grammy Awards- 26th Jan, 2014 

The impact (with delay) of the Seoul Music Awards, held on Jan. 22nd, can be 

seen on the tweet volume of Jan. 24th. The 24 hour pattern is consistent with previous 

large-scale stuidies undertaken on Twitter (Frank et al., 2013, Dodds et al., 2011). The 

24-hour cycle started in accordance with Greenwich Mean Time (GMT) in this study. 

Future research can be conducted to identify the impact of changing the start times of 

24 hour cycle on the results.  
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5.2 Overview of Variables 

In this section, I discuss the important daily patterns seen in the independent 

variables, moderating variables and dependent variables of this study for all six product 

categories.  The detailed patterns of all variables are provided in the Case Overview 

sections of Appendix A.  

5.2.1 Independent Variables 

Independent variables in this study consist of the number of nodes (Nodes), 

number of ties in the undirected network and directed network (Edges_ud, Edges_d), 

Reciprocity, Density Undirected (Den_ud), Density Directed (Den_d), Clustering 

Coefficient Undirected (CC_ud) and Clustering Coefficient Directed (CC_d). Definitions 

and explanations of each variable are provided in section 4.3. Detailed patterns of each 

variable for all six product categories are shown in Appendix A (A.1.3, A.2.3, A.3.3, A.4.3, 

A.5.3, A.6.3) 

For all product categories, the number of directed ties (Edges_d) in the network 

and the total number of nodes (Nodes) follow the same pattern. The number of nodes 

(Nodes) forming the largest community increases in tandem with the number of ties 

(Edges_ud, Edges_d) in the community. The numbers of undirected ties (Edges_ud) is 

greater than the number of directed ties (Edges_d), because in an undirected network 

every directed tie is considered to be symmetric. Hence every tie is counted twice, 

except for the ties that are already symmetric in the directed network.  
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The reciprocity (Reciprocity) is 100% for any undirected network, as all ties are 

considered to be symmetric. In case of a directed network, the product categories 

“Howto” and “Science” seldom form networks that are reciprocal. The product 

categories of “Entertainment”, “Comedy” and “Sports” form networks that are 

intermittently reciprocal. “Music” is the only product category that forms a reciprocal 

network every day for the duration of analysis. 

For all product categories, the undirected networks are denser than the directed 

networks (CC_ud >CC_d). This is not surprising, since all the non-symmetric ties in a 

directed network are counted twice in the corresponding undirected network. Product 

categories that form larger networks (e.g. Music) seem to be less dense than product 

categories that form smaller networks (e.g. Howto). This is true for both directed and 

undirected networks.  

The directed networks of all product categories other than the “Music” category 

seldom show Clustering Coefficients (CC_d) above 0.  “Music” is the only directed 

network that shows Clustering Coefficient (CC_d) above 0 on a daily basis. The directed 

network shows a higher Clustering Coefficient than the undirected network in “Music” 

product category. “Howto” is the only product category whose undirected networks 

seldom show Clustering Coefficients (CC_ud) above 0.  
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5.2.2 Moderating Variables 

5.2.2.1 Network Flow Variables (MV2) 

Network flow variables in this study consist of the Total Number of Paths in an 

undirected network (Tpaths_ud); the Total Number of Shortest Paths in an undirected 

network (TSpaths_ud); Total Paths in a directed network (Tpaths_d); Total Shortest 

Paths in a directed network (TSpaths_d); Average Path Length and Average Geodesic 

Length for both directed and undirected networks (AvgPL_ud, AvgGL_ud, AvgPL_d, 

AvgGL_d); and the Graph Diameter for both directed and undirected networks (GD_ud, 

GD_d). Definitions and explanations of each of these variables have been provided in 

section 4.3. Detailed patterns of each variable for all six product categories are shown in 

Appendix A (A.1.5, A.2.5, A.3.5, A.4.5, A.5.5, A.6.5). 

For all product categories, Total Paths in the undirected networks (Tpaths_ud) is 

greater than Total Shortest Paths in the undirected network (TSpaths_ud), Total Paths in 

the directed network (Tpaths_d) and Total Shortest Paths in the directed networks 

(TSpaths_d). As the size of the network formed increases, the difference between the 

Total Paths in the undirected network (Tpaths_ud) and the Total Shortest Paths in the 

undirected network (TSpaths_ud) increases by orders of magnitude. The difference 

between the Total Paths in the directed network (Tpaths_d) and the Total Shortest 

Paths in the directed network (TSpaths_d) is a lot less than the difference between the 

Total Paths in the undirected network (Tpaths_ud) and the Total Shortest Paths in the 
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undirected network (TSpaths_ud). As the size of the network formed decreases, 

difference between the Total Paths in directed network (Tpaths_d) and the Total 

Shortest Paths in directed (TSpaths_d) network is almost negligible.  

Similar trends as the Total Paths (Tpaths_x) and the Total Shortest Paths 

(TSpaths_x) are seen with respect to the Average Path Lengths (AvgPL_x) and the 

Average Geodesic Lengths (AvgGL_x). As the size of the networks increases, the 

difference between Average Path Length in the undirected network (AvgPL_ud) and the 

Average Geodesic Length in the undirected network (AvgGL_ud) increases by orders of 

magnitude. The difference between the Average Path Lengths in the directed network 

(AvgPL_d) and the Average Geodesic Lengths in the directed network (AvgGL_d) is lot 

less than the difference between the Average Path Lengths and the Average Geodesic 

lengths in the undirected network (AvgPL_ud, AvgGL_ud). As the size of the network 

formed decreases, difference between the Average Path Lengths in the directed 

network (AvgPL_d) and the Average Geodesic Lengths (AvgGL_d) in the directed 

network is almost negligible.  

The Graph Diameter of the undirected network (GD_ud) is greater than the 

Graph Diameter of the directed network (GD_d). The magnitude of the Graph Diameter 

in both the directed and the undirected networks increases as the size of the network 

increases.  It is also noteworthy that in all cases the Graph Diameter of the undirected 

(GD_ud) and the Average Path Length of the directed networks (AvgGL_d) track pretty 

closely.  
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5.2.2.2 Network Structure Variables (MV1) 

The network structure variables in this study consist of the Scale Free metric 

(S_x), the Assortativity (R_x), the Small World metric (SMSP_x), the Total Number of 

Paths and the Shortest Paths Power Law Distribution per Node (PL_TpxN, PL_TSpxN). 

Definitions and explanations of each of these variables have been provided in section 

4.3. Detailed patterns of each variable for all six product categories are shown in 

Appendix A (A.1.4, A.2.4, A.3.4, A.4.4, A.5.4, A.6.4). 

For all product categories, the Scale Free metric for the directed and the 

undirected networks (S_ud, S_d) follow a similar pattern. The consumption network and 

the propagation network (S_con, S_pro) follow very different patterns. In the “Music”, 

“Sports” and “Howto” categories, the propagation network is more Scale Free than the 

consumption network (S_con<S_pro). This trend is consistent over the duration of 

analysis for “Music” category whereas for the “Sports” and the “Howto” categories the 

trend is intermittent. In the “Entertainment”, “Comedy” and “Science” categories 

consumption network is more Scale Free than the propagation network (S_con>S_pro). 

This trend is consistent over the duration of analysis for the “Comedy” category whereas 

for the “Entertainment” and the “Science” categories the trend is intermittent. 

For all product categories, the undirected networks are more Disassortative than 

the directed networks, the consumption networks or the propagation networks (R_ud < 

(R_d, R_con, R_pro)). In the “Music” category, the consumption network is more 
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Disassortative than the propagation network (R_con<R_pro). In the “Entertainment” 

category, the propagation network is Disassortative (R_con>R_pro), whereas the 

consumption network toggles between being Assortative and Disassortative. In the 

“Comedy” category, the consumption network is always Disassortative, whereas the 

propagation is relatively less Disassortative and sometimes toggles to being Assortative. 

In the “Sports” category, both the consumption and the propagation network toggle 

between being Assortative and Disassortative. In the “Howto” category, the 

consumption network is more often Assortative than the propagation network. Both the 

consumption network and the propagation network are consistently Disassortative. In 

the “Science” category, the propagation network is consistently more Assortative than 

the consumption network.  

The Small World measures for the consumption and propagation networks are 

the same as the ones for the directed network. The directed networks show stronger 

Small World behavior than the undirected networks in the “Music” category (SMSP_d 

>SMSP_ud). In the “Entertainment”, “Music”, “Howto” and “Science” categories, the 

directed and the undirected networks don’t show any significant Small World behavior. 

In the “Sports” category, the undirected network shows intermittent Small World 

behavior whereas the directed networks don’t show any Small World behavior. 

In all categories, the distribution of undirected paths per node (PL_TpudN) 

shows a better power law behavior than the distribution of shortest paths per node 

(PL_TSpudN). As the scale of the network reduces the power law behavior of directed 
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paths per node (PL_TpdN), incoming paths per node (PL_TpinN) and the outgoing paths 

per node (PL_TpoutN) becomes erratic.  

5.2.3 Dependent Variables 

The dependent variables in this study consist of the Eigenvector Centralization 

(ECx), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCxN), Clustering 

Coefficients of Eigenvector Centrality vs. Total Paths per Node (EVCx_TpxN) and 

Clustering Coefficients of Eigenvector Centrality vs. Total Paths per Node (EVCx_TSpxN). 

Definitions and explanations of each of these variables have been provided in section 

4.3. Detailed patterns of each variable for all the six product categories are shown in 

Appendix A (A.1.6, A.2.6, A.3.6, A.4.6, A.5.6, A.6.6).   

In all product categories, the undirected networks show better Eigenvector 

Centralization (ECud) than the directed (ECd) networks, the consumption (ECin) 

networks or the propagation (ECout) networks. The consumption and propagation 

networks exhibit same level of Eigenvector Centralization (ECin=ECout). The directed 

networks have the least Eigenvector Centralization.  

The distribution of the Eigenvector Centrality across the nodes for the “Music” 

category exhibits a similar power law pattern (PL_EVCxN) for all networks (undirected, 

directed, consumption and propagation) for the whole period of time under 

investigation. In all other product categories, only the Eigenvector Centrality values of 

the undirected network are consistently distributed in a power law distribution pattern 
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(PL_EVCudN) for the whole period of time under investigation. In the directed, the 

consumption and the propagation network the distribution of Eigenvector Centrality 

follows a power law distribution pattern (PL_EVCinN, PL_EVCoutN) only for a portion of 

the period of time under investigation.  

In all product categories, there is a significant correlation between the 

Eigenvector Centrality of a node with respect to the number of paths from a node in 

undirected network (EVCud_TpudN). There is no significant correlation between 

Eigenvector Centrality of a node with respect to shortest paths from a node in 

undirected network (EVCud_TSpudN). In the propagation network, for all product 

categories, there is no significant correlation either between the Eigenvector Centrality 

of a node with respect to the number of paths (EVCout_TpoutN) or between the 

Eigenvector Centrality of a node with respect to the number of shortest paths 

(EVCout_TSpoutN). In the directed and the consumption networks, for all product 

categories, the correlation coefficients of both Eigenvector Centrality of a node with 

respect to the number of paths (EVCd_TpdN, EVCin_TpinN) and Eigenvector Centrality 

of a node with respect to the number of shortest paths (EVCd_TSpdN, EVCin_TSpinN), 

increases significantly as the scale of the network reduce. 

5.3 Random vs. Non-Random Networks 

The product categories being analyzed are extremely dynamic and show high 

levels of variability from day to day, as shown in Table 11 below. 
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Table 11: Maximum and Minimum Daily Values 

 

For example, in the “Music” category, the maximum of the total number of daily tweets 

and the maximum of the total number of daily unique people observed on a single day 

(the daily uniques) are 62,380 and 59,666, respectively. Similarly, the minimum of the 

total number of daily tweets and the minimum of the number of daily uniques are 

19,700 and 18,333, respectively.  The size of the largest community on a particular day 

and the largest number of community tweets on that day also seem to follow the trend 

of total people and total tweets. The largest number of daily community tweets and the 

largest number of daily unique people are 48,720 and 47,630, respectively.  Similarly, 

the smallest number of daily community tweets and the smallest number of daily 

unique people are 10,830 and 10,324, respectively. The daily values are shown in 

Appendix A.   

In order to understand which community networks on a given day are formed 

randomly and in order to eliminate α- error and β- error(as explained in section 4.4.1), I 

compare the Clustering Coefficients of both undirected and directed networks (CC_ud 

and CC_d) with their corresponding random (Erdös-Renyi, E-R) networks (CCudran and 
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CCdran). If the Clustering Coefficients of the undirected and directed (CC_ud and CC_d) 

“Music” networks are equal to those of the E-R random network (CCudran and CCdran) , 

then the directed and undirected networks are considered to be random, if they are not 

equal, then they are not random. If the Clustering Coefficient (CC_ud and CC_d)  for the 

observed network is zero, then they are considered random as the network forms a star 

network.   

To further elucidate, consider the “Howto” community formed on January 6th, 

2014 (details shown in Appendix A). The network has 15 nodes and 15 directed ties 

(self-ties are ignored). For the undirected version of the network all ties are considered 

symmetric, therefore there are 30 ties as shown in Figure 20 below. 

In the directed version of the network, there is no transitivity i.e., the 

information only moves from a node to the connected node in a single direction. The 

information does not go beyond the connected node. There are no reciprocal 

relationships or instances where two different nodes connected to a node exchanging 

information with each other. The Clustering Coefficient (CC_d) of the network is 0. 

Therefore, the directed network is a random network. 
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Figure 20: “Howto” Network Jan 6th, 2014 (a) Directed (b) Undirected 

 

                                                      (a) 

 

                                                    (b) 
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In the undirected network, in which all relationships are bi-directional, the 

information flows beyond just the connected node. There are reciprocal relationships 

and instances where two different nodes connected to a node, exchange information 

with each other. The Clustering Coefficient (CC_ud) of the undirected network (in fig. 

19(b)) is 0.07894.  The undirected network still needs to be compared to an equivalent 

E-R random undirected network (CCudran) to ascertain if it’s random or not. 

The equivalent E-R random undirected network is shown in Figure 21 below. As 

can be seen in Figure 21, there are instances where two different nodes connected to a 

node, exchange information with each other. The Clustering Coefficient of the 

undirected network (CCudran) is 0.133333. Comparing the Clustering Coefficients of the 

undirected network (CC_ud) and its equivalent random undirected network (CCudran), 

it is clear that the undirected network is not a random network.  

Figure 21: Equivalent E-R Random Undirected Network 
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To understand the daily status of the networks formed for the six chosen 

product categories, the Clustering Coefficients of the daily undirected (CC_ud, in blue) 

and the daily directed networks (CC_d, in blue) were compared to the Clustering 

Coefficients of their respective random undirected and directed networks (CCudran and 

CCdran, both in red). 
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Figure 22: Clustering Coefficient of undirected network vs equivalent random undirected 

network (a) Music (b) Entertainment (c) Comedy (d) Sports (e) Howto (f) Science 
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       Figure 23: : Clustering Coefficient of directed network vs equivalent random directed 

network (a) Music (b) Entertainment (c) Comedy (d) Sports (e) Howto (f) Science 
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Figure 22 compares the Clustering Coefficients of undirected networks (CC_ud) 

to their equivalent random undirected networks (CCudran). Except for Figure 22 (e), the 

“Howto” undirected network, all the other undirected networks are non-random. For 

the “Howto” undirected networks the Clustering Coefficient (CC_ud) is zero on most of 

the days. For rest of the networks the Clustering Coefficient (CC_ud) displays a very 

distinct pattern from that of a random undirected network (CCudran).  

Figure 23 shows the comparison Clustering Coefficients of directed networks 

(CC_d) with their equivalent random directed networks (CCdran). Except for Figure 23 

(a), the “Music” directed network, all the other directed networks are random. For 

“Music” undirected networks the Clustering Coefficient (CC_d) displays a very distinct 

pattern from that of a random directed network (CCdran). For rest of the networks the 

Clustering Coefficient (CC_d) is zero on most of the days. 

The consumption and the propagation networks emanate from the directed 

network. Hence, they follow the same pattern as the directed network. The results for 

all the networks are summarized in the Table 12 below. 
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Table 12: Random or Not Random Status of Six Product Category Networks 

 

From Table 12 above, it can be seen that for the “Howto” product category both 

the undirected and the directed network are random. Therefore, it will be removed 

from further analysis. For the “Music” product category both the directed and the 

undirected networks are not-random. For all the other product categories the 

undirected networks are not-random, while the directed networks are random. 

As seen in section 2.2 of literature research, most theories of social phenomena 

talk about the impact of network flow on the social phenomenon. For example, Rogers 

talks about the importance of interpersonal communication within a social system for 

diffusion of innovation (Rogers, 2003). Granovetter suggests that weak ties are the 

sources of new information that flows into the network from the outside (Granovetter, 

1973). However, for the most part, during the analysis they consider the network to be 

undirected. Though they allude to the existence of directionality, they do not consider 

them explicitly in their analysis process. Therefore, in this study, for all the product 

categories that have non-random undirected networks, directed networks will also be 

considered for analysis, even if they are random.  Hence, all the undirected networks 
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are non-random networks. In directed networks, only the networks pertaining to Music 

are non-random, whereas the rest are random networks.  

5.4 Factor Analysis and Correlations 

In this section, I present the results of factor analysis and correlation analysis 

undertaken for this study. The detailed factor analysis and the correlation analysis of all 

variables are shown in Appendix A (A.1.7.1.2, A.1.7.2.2, A.1.7.3.2, A.1.7.4.2, A.2.7.1.2, 

A.2.7.2.2, A.2.7.3.2, A.2.7.4.2, A.3.7.1.2, A.3.7.2.2, A.3.7.3.2, A.3.7.4.2, A.4.7.1.2, 

A.4.7.2.2, A.4.7.3.2, A.4.7.4.2, A.6.7.1.2, A.6.7.2.2, A.6.7.3.2, A.6.7.4.2 ) and Appendix A 

(A.1.7.1.1, A.1.7.2.1, A.1.7.3.1, A.1.7.4.1, A.2.7.1.1, A.2.7.2.1, A.2.7.3.1, A.2.7.4.1, 

A.3.7.1.1, A.3.7.2.1, A.3.7.3.1, A.3.7.4.1, A.4.7.1.1, A.4.7.2.1, A.4.7.3.1, A.4.7.4.1, 

A.6.7.1.1, A.6.7.2.1, A.6.7.3.1, A.6.7.4.1) respectively. The goal of the factor analysis in 

this study is to understand if the variables described as the independent variables, the 

moderating variables and the dependent variables for the undirected network, directed 

network, consumption network and the propagation network of the selected product 

categories measure the same constructs.  Thus the factors formed are indicative of 

latent processes happening within the networks under consideration.  

Exploratory factor analysis was used in this study to generate factors that explain 

the shared variability in the variables. One of the main problems in application of 

exploratory factor analysis is deciding how many factors to retain. In general, the best 

known and most utilized method is the one proposed by Kaiser, which suggests that 
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only factors that have eigenvalues greater than one should be retained for 

interpretation (Kaiser, 1960). Fabrigar, et al. (1999) point out three problems with 

Kaiser’s rule (Fabrigar et al., 1999). They are: 

1. This method was proposed for principal component analysis (PCA) and not for 

exploratory factor analysis. 

2. This rule leads to arbitrary selection of factors. It does not make to sense to 

regard a factor with eigenvalue of 1.01 as a valid factor and disregard a factor 

with eigenvalue of 0.99 as an invalid factor. 

3. This rule tends to overestimate the number of factors in some cases and 

underestimate the number of factors in other cases. 

The other popular method is scree test (Cattell, 1966). This method involves 

visual exploration of a graphical representation of eigenvalues, in which the eigenvalues 

are linked with a line and presented in a descending order. The point at which the line 

levels off is the point that divides the major factors from the trivial factors.  

Because of the deficiencies of the Kaiser rule and the subjectivity of the scree 

test, I do not use these methods for factor extraction in this study. 

A third method, suggested in the literature is to retain the number of factors 

that account for certain percentage of variance extracted. The majority of the literature 

suggests that 75% – 90% of the variance should be accounted for (George, 1989). This 

method seems more suitable for the exploratory research being undertaken in this 

study. In practice, for the purpose of this study, the factors that emerge from the factor 
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analysis when 80% of the variance is explained are more meaningful and interpretable. 

Therefore, factors generated from the exploratory factor analysis are set to account for 

at least 80% of the variance. Varimax rotation as the rotation procedure is used to make 

the factors more interpretable. 

The Kaiser-Mayer-Olkin (KMO) measure of sampling adequacy was used to test 

the proportion of variance in the variables that might be caused by the underlying 

factors. The results of factor analysis were considered, only if the KMO value was 

greater than 0.5.  Bartlett’s test of sphericity was used to test if there are correlations in 

the data that are appropriate for the factor analysis. The results of the factor analysis 

were considered, only if the significance (p-value) of Bartlett’s test of sphericity were 

less than 0.05. 

To ensure the reliability of the factors formed, only factors with Cronbach’s 

alpha value greater than 0.6 are considered. To verify the criteria related validity of the 

factors, I use correlation analysis (detailed correlation analysis is shown in Appendix A). 

The results of the factor analysis are shown in Table 13 below (detailed factor analysis is 

shown in Appendix A). (Note: Cronbach’s alpha in Table 13 below is not used to 

compare the factors.  The values of Cronbach’s alpha are only being shown to ascertain 

that the factors formed as a result of factor analysis are reliable.)  
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Table 13: Factors formed along with their Cronbach alpha values 

 

5.4.1 Factors from Independent Variables 

From Table13, it can be seen that the independent variables form a single factor 

labelled “Size” across all product categories and all network types (undirected, directed, 
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consumption and propagation), except in the directed network of Science product 

category. The factor “Size” comprises of variables the total number of nodes and the 

total number of ties in a network. The total number of nodes (Nodes) and ties 

(Edges_ud, Edges_d) define the “Size” of a network. In all the cases where “Size” is a 

factor, the total number of nodes (Nodes) and the total number of ties (Edges_ud, 

Edges_d) in a network have strong factor loadings. The details of factor analysis for all 

independent variables are shown in Appendix A (A.1.7.1.2.1, A.1.7.2.2.1, A.1.7.3.2.1, 

A.1.7.4.2.1, A.2.7.1.2.1, A.2.7.2.2.1, A.2.7.3.2.1, A.2.7.4.2.1, A.3.7.1.2.1, A.3.7.2.2.1, 

A.3.7.3.2.1, A.3.7.4.2.1, A.4.7.1.2.1, A.4.7.2.2.1, A.4.7.3.2.1, A.4.7.4.2.1, A.6.7.1.2.1, 

A.6.7.2.2.1, A.6.7.3.2.1, A.6.7.4.2.1) 

5.4.2 Factors from Network Flow (MV2) Variables 

The network flow variables also form factors across all product categories and all 

network types (undirected, directed, consumption and propagation). The network flow 

variables form four distinct factors “Spread”, “Speed”, “Spread and Speed “and “Spread 

and Speed Boundary”.  

The factor “Spread” consists of the following variables: the Graph Diameter 

(GD_x) of the network, the Total Paths (Tpaths_x) in the network and the Average Path 

Length (AvgPL_x).  As explained in section 4.3.3.2.2, the Total Paths (Tpaths_x) in the 

network and the Average Path Length (AvgPL_x) is representative of the process of 

spreading the information in the network. In all the cases where “Spread” is a factor, the 
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Graph Diameter of the network (GD_x), the Total Paths in the network (Tpaths_x) and 

the Average Path Length (AvgPL_x) have strong factor loadings. 

The factor “Speed” consists of the following variables: the Total Shortest Paths 

(TSpaths_x) in the network and the Average Geodesic Length (AvgGL_x).  As explained in 

section 4.3.3.2.2, the Total Shortest Paths (TSpaths_x) in the network and the Average 

Geodesic Length (AvgGL_x) is representative of the process of Speed of information 

spread in the network. In all the cases where “Speed” is a factor, the Total Shortest 

Paths (TSpaths_x) in the network and the Average Geodesic Length (AvgGL_x) have 

strong factor loadings. 

The factor “Spread and Speed” consists of the following variables: the Graph 

Diameter of the network (GD_x), the Total Paths in the network (Tpaths_x), the Average 

Path Length (AvgPL_x), the Total Shortest Paths (TSpaths_x) in the network and the 

Average Geodesic Length (AvgGL_x).  As explained in section 4.3.3.2.2, the Total 

Shortest Paths in the network (TSpaths_x) and the Average Geodesic Length (AvgGL_x) 

are representative of the process of speed of information spread in the network and the 

Total Paths in the network (Tpaths_x) and the Average Path Length (AvgPL_x) are 

representative of the process of spreading information in the network. In most of the 

cases where “Spread and Speed” is a factor, variables the Graph Diameter of the 

network (GD_x), the Total Paths in the network (Tpaths_x), the Average Path Length 

(AvgPL_x) the Total Shortest Paths (TSpaths_x) in the network and the Average Geodesic 
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Length (AvgGL_x) have strong factor loadings. In some cases Total Shortest Paths loads 

independently. 

The factor “Spread and Speed Boundary” consists of the following variables: the 

Graph Diameter of the network (GD_x), the Average Path Length (AvgPL_x) and the 

Average Geodesic Length (AvgGL_x). As explained in section 4.3.3.2.2, the Average 

Geodesic Length (AvgGL_x) is representative of the boundary of the process of Speed of 

information spread in the network and the Average Path Length (AvgPL_x) is 

representative of boundary of the process of information spread in the network. In all 

the cases where “Spread and Speed Boundary” is a factor, Graph Diameter of the 

network (GD_x), the Average Path Length (AvgPL_x) and the Average Geodesic Length 

(AvgGL_x) have strong factor loadings. In some cases one of the variables loads 

independently. 

The details of factor analysis for all network flow variables are shown in 

Appendix A (A.1.7.1.2.3, A.1.7.2.2.3, A.1.7.3.2.3, A.1.7.4.2.3, A.2.7.1.2.3, A.2.7.2.2.3, 

A.2.7.3.2.3, A.2.7.4.2.3, A.3.7.1.2.3, A.3.7.2.2.3, A.3.7.3.2.3, A.3.7.4.2.3, A.4.7.1.2.3, 

A.4.7.2.2.3, A.4.7.3.2.3, A.4.7.4.2.3, A.6.7.1.2.3, A.6.7.2.2.3, A.6.7.3.2.3, A.6.7.4.2.3) 

5.4.3 Factors from Network Structure (MV1) Variables 

The network structure variables form factors only in the “Entertainment”, 

“Comedy”, “Sports” and “Science” product categories. Within these product categories 

the network structure variables form factors only in the directed, the consumption and 
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the propagation networks. The network structure variables form three distinct factors 

“Structure”, “Distribution “and “Structure and Distribution”. 

The factor “Structure” consists of the following variables: the Scale Free metric 

(S_x) and the Assortativity (R_x). As explained in section 4.3.3.1.2, the Scale Free metric 

(S_x) and the Assortativity (R_x) explain the presence of hubs and the patterns of 

connectivity in the network. In all the cases where “Structure” is a factor, the Scale Free 

metric (S_x) and the Assortativity (R_x) have strong factor loadings.  

The factor “Distribution” consists of the following variables: the Power Law 

Distribution of Total Paths per Node (PL_TpxN) and the Power Law Distribution of Total 

Shortest Paths per Node (PL_TSpxN). As explained in section 4.3.3.1.4, variables the 

Power Law Distribution of Total Paths per Node (PL_TpxN) and the Power Law 

Distribution of Total Shortest Paths per Node (PL_TSpxN) explain the distribution of 

paths and shortest paths with respect to the nodes in the network. In all the cases 

where “Distribution” is a factor, the Power Law Distribution of Total Paths per Node 

(PL_TpxN) and the Power Law Distribution of Total Shortest Paths per Node (PL_TSpxN) 

have strong factor loadings. 

The factor “Structure and Distribution” consists of the following variables: the 

Scale Free metric (S_x), the Assortativity (R_x), the Power Law Distribution of Total 

Paths per Node (PL_TpxN) and the Power Law Distribution of Total Shortest Paths per 

Node (PL_TSpxN). As explained in section 4.3.3.1.2, the Scale Free metric (S_x) and the 
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Assortativity (R_x) explain the presence of hubs and the patterns of connectivity in the 

network. As explained in section 4.3.3.1.4, variables the Power Law Distribution of Total 

Paths per Node (PL_TpxN) and the Power Law Distribution of Total Shortest Paths per 

Node (PL_TSpxN) explain the distribution of paths and shortest paths with respect to the 

nodes in the network. In all the cases where “Structure and Distribution” is a factor, the 

Power Law Distribution of Total Paths per Node (PL_TpxN), the Power Law Distribution 

of Total Shortest Paths per Node (PL_TSpxN), the Scale Free metric (S_x) and the 

Assortativity (R_x) have strong factor loadings. 

The details of factor analysis for all network structure variables are shown in 

Appendix A (A.1.7.1.2.2, A.1.7.2.2.2, A.1.7.3.2.2, A.1.7.4.2.2, A.2.7.1.2.2, A.2.7.2.2.2, 

A.2.7.3.2.2, A.2.7.4.2.2, A.3.7.1.2.2, A.3.7.2.2.2, A.3.7.3.2.2, A.3.7.4.2.2, A.4.7.1.2.2, 

A.4.7.2.2.2, A.4.7.3.2.2, A.4.7.4.2.2, A.6.7.1.2.2, A.6.7.2.2.2, A.6.7.3.2.2, A.6.7.4.2.2) 

5.4.4 Factors from Dependent Variables 

The dependent variables form a single factor labelled “Influence” across all 

product categories. Within these product categories the network structure variables 

form factors only in the directed, the consumption and the propagation networks. The 

factor “Influence” consists of the following variables: the Correlation Coefficient of 

Eigenvector Centrality with respect to Total Paths (EVCx_TpxN) and the Correlation 

Coefficient of Eigenvector Centrality with respect to Total Shortest Paths (EVCx_TSpxN). 

As described in section 4.3.4.1, the Correlation Coefficient of Eigenvector Centrality with 
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respect to Total Paths (EVCx_TpxN) is used as a measure of influence with respect to 

information spread and the Correlation Coefficient of Eigenvector Centrality with 

respect to Total Shortest Paths (EVCx_TSpxN) is used as a measure of influence with 

respect to speed of information spread. In all the cases where “Influence” is a factor, the 

Correlation Coefficient of Eigenvector Centrality with respect to Total Paths and 

(EVCx_TpxN) the Correlation Coefficient of Eigenvector Centrality with respect to Total 

Shortest Paths (EVCx_TSpxN) have strong factor loadings. 

The details of factor analysis for all network flow variables are shown in 

Appendix A (A.1.7.1.2.4, A.1.7.2.2.4, A.1.7.3.2.4, A.1.7.4.2.4, A.2.7.1.2.4, A.2.7.2.2.4, 

A.2.7.3.2.4, A.2.7.4.2.4, A.3.7.1.2.4, A.3.7.2.2.4, A.3.7.3.2.4, A.3.7.4.2.4, A.4.7.1.2.4, 

A.4.7.2.2.4, A.4.7.3.2.4, A.4.7.4.2.4, A.6.7.1.2.4, A.6.7.2.2.4, A.6.7.3.2.4, A.6.7.4.2.4). 

The correlation matrices presented in Appendix A confirm the criteria-related 

validity. For example, in the undirected network of Entertainment product category, the 

variables of factor “Speed” (Average Geodesic Length (AvgGL_ud) and Total Shortest 

Paths  (TSpaths_ud)) correlate significantly with the variables of factor “Size” (the total 

number of nodes (Nodes) and the total number of ties (Edges_ud)), as shown in Table 

14 below. 
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Table 14: Correlation between Variables of Factors “Speed and “Size”, in the Undirected 
Network of “Entertainment” Category 

 

This shows that the factors, Size and Speed, are capable of adequately capturing the 

relevant aspects of each other in the undirected network of Entertainment product 

category. 

5.5 Regression Analysis 

This study uses multiple linear regression analysis to determine the relative 

impact of the predictor variables on the dependent variables. Multiple regression is an 

extension of simple regression in which an outcome is predicted by a linear combination 

of two or more predictor variables (Field, 2005, p. 738). The results of this regression 

analysis are provided in this section. 
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I use two approaches to regression in this study. In the first approach, I use all 

the predictors (independent variables and moderating variables (network flow variables 

and network structure variables)) to show their impact on each of the dependent 

variables (network phenomenon variables).  In this approach, the regression model does 

not include interactions between the independent variables and the moderating 

variables. In the second approach, in order to address the research questions (RQ1, 

RQ2, RQ3 and RQ4); I use the following four regression models: 

1. Network structure variables as predictors to show their impact on each of the 

network flow variables. 

2. Network flow variables as predictors to show their impact on each of the 

network structure variables. 

3. Network structure variables as predictors to show their impact on each of the 

dependent variables (as defined in section 5.2.3). 

4. Network flow variables as predictors to show their impact on each of the 

dependent variables (as defined in section 5.2.3). 

The stepwise regression function from IBM’s SPSS version 22 (64 bit) is used in both 

approaches. The stepwise regression function uses both forward and backward 

regression models to find the best predictors.22  

                                                           
22

 The stepwise method calculates the contribution of each predictor on the outcome by comparing the 
significance value or the t-test of each predictor against a removal criterion. If a predictor meets the 
removal criterion or does not improve the prediction power of the model, then it is removed from the 
analysis. Then the model re-assesses the remaining predictors. Source: SPSS Online help 
(http://10.10.10.245:6908/help/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fspss%2Fbase%2Fove
rvw_auto_0.htm) 
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In order to ensure that the regression models are not suffering from 

multicollinearity, “Tolerance” and “VIF” (variable inflation factor) from the “Collinearity 

Statistics” section of SPSS results are considered. The Tolerance value is an indicator of 

the variance of the predictor variable (independent variable) shared with some other 

predictor variable (independent variable) in the regression model (Neter et al., 1996, 

Allison, 1999). “VIF” is the reciprocal of “Tolerance” (Neter et al., 1996, Allison, 1999).  

Various recommendations for acceptable levels of Tolerance and VIF have been 

published in the literature. Most commonly, a value of 0.1 has been recommended as 

the minimum level of Tolerance (O’brien, 2007, Fidell and Tabachnick, 2003). However, 

a recommended minimum value as high as 0.2 has also been suggested (Menard, 2002). 

Similarly, a value of 10 has been commonly recommended as the maximum level of VIF 

(Kennedy, 2003, Marquaridt, 1970, Neter et al., 1996). A recommended maximum VIF 

value of 5 (Rogerson, 2010) and even 4 (Pan and Jackson, 2008) can be found in the 

literature. The lowest suggested value of VIF found in literature was 2.5 (Brown et al., 

2007, Coumarbatch et al., 2010).  As this is exploratory research, I side on the edge of 

caution and use conservative values -- 0.2 as the minimum level of Tolerance and 2.5 as 

the maximum value VIF. Therefore, if a regression model has a “Tolerance” value of less 

than 0.2, then the regression model is suffering from multicollinearity. Similarly, if a 

regression model has a “VIF” value greater than 2.5, then the regression model is 

suffering from multicollinearity. In both these cases, the regression model is rejected. 
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Cooks test is undertaken to identify the influential outliers in the data that may 

be skewing the regression (Cook, 1977, Cook, 1979). Any data point that has a Cooks 

distance greater than 1 in the regression model is considered influential (Cook, 1977, 

Cook, 1979). In this situation, the influential data point is deleted and the regression is 

undertaken again without the influential data point.  

Regressions were performed on the product categories of “Music”, 

“Entertainment”, “Comedy”, “Sports” and “Science”. In every product category the 

undirected networks, the directed networks, the consumption networks and the 

propagation networks were considered separately, in order to address the research 

questions put forth in section 2.8.  

Overall, there are 16 hypotheses in this desertion, which are described in section 

3.3. Each product category is tested for these 16 hypotheses. These 16 hypotheses 

involve 72 regressions for each product category.  

Table 15: Total Regressions per Product Category 

 

Undirected Network Directed Network

Directed Network 

Consumption Phase

Directed Network 

Propagation Phase

Network Structure to 

Network Flows (HP1) 5 Regressions 5 Regressions 5 Regressions 5 Regressions 20

Network Flows to Network 

Structure (HP2) 5 Regressions 5 Regressions 5 Regressions 5 Regressions 20

Network Structure to 

Network Phenomenon (HP3) 4 Regressions 4 Regressions 4 Regressions 4 Regressions 16

Network Flows to Network 

Phenomenon (HP4) 4 Regressions 4 Regressions 4 Regressions 4 Regressions 16

72
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In order to reduce the family-wise error rate that results from multiple 

comparisons of data, a Bonferroni adjustment is undertaken. Due to this adjustment, 

the statistical significance level (p-value) for each test will be lowered to 0.000694 

(Dunn, 1959, Dunn, 1961).  

The details of the regression analysis are provided in Appendix A. In section 

5.5.1, the results of the first approach to regression are presented, in which the 

independent variables and moderating variables (network flow variables and network 

structure variables) are used as predictors. In section 5.5.2, I present results that 

address the research question RQ1: Does network structure impact network flows in a 

social network that primarily exists online (hypothesis HP1a, HP1b, HP1c and HP1d)? In 

section 5.5.3, I present results that address the research question RQ2: Does network 

flow impact network structure in a social network that primarily exists online 

(hypothesis HP2a, HP2b, HP2c and HP2d)? In section 5.5.4, I present results that address 

the research question RQ3: Does network structure impact influence within an online 

social network (hypothesis HP3a, HP3b, HP3c and HP3d)? In section 5.5.5, I present 

results that address the research question RQ4: Does network flow impact influence 

within an online social network (hypothesis HP4a, HP4b, HP4c and HP4d)? In every case, 

the impact of the predictor variables on the dependent variables is considered 

identified, if at least one predictor variable impacts at least one dependent variable in a 

statistically significant fashion. The code “NA” in subsequent tables means that no 



www.manaraa.com

163 
 

significant impact was found between the predictor variables and the dependent 

variable.  

5.5.1 Collective Impact of Independent Variables, Moderating Variables (Network 

Structure and Network Flow Variables) on the Network Phenomenon Variables. 

In this section, I present results of the first approach to regression mentioned 

above. The data for product categories of “Music”, “Entertainment”, “Comedy”, 

“Sports” and “Science” is considered in undirected, directed, consumption and 

propagation phases. The significance (p-value) of 0.000694 is considered after the 

Bonferroni adjustment.  The details of the regression analysis are provided in Appendix 

A (A.1.7.1.3.5, A.1.7.2.3.5, A.1.7.3.3.5, A.1.7.4.3.5, A.2.7.1.3.5, A.2.7.2.3.5, A.2.7.3.3.5, 

A.2.7.4.3.5, A.3.7.1.3.5, A.3.7.2.3.5, A.3.7.3.3.5, A.3.7.4.3.5, A.4.7.1.3.5, A.4.7.2.3.5, 

A.4.7.3.3.5, A.4.7.4.3.5, A.6.7.1.3.5, A.6.7.2.3.5, A.6.7.3.3.5, A.6.7.4.3.5). 

Table 16: Collective Impact of Independent Variables, Moderating Variables (Network Structure 

and Network Flow Variables) on the Network Phenomenon in Undirected Networks 

Predictors: (1) PL_TpudN, (2) PL_TSpudN, (3) S_ud, (4) R_ud, (5)SMSP_ud, (6),GD_ud (7) Tpaths_ud (8), 

TSpaths_ud, (9) AvgPL_ud, (10) AvgGL_ud, (11) Nodes, (12) Edges_ud, (13) Den_ud, (14) CC_ud 

 

Table 16 shows that in every case the independent and the moderating variables 

collectively have a significant impact on the network phenomenon variables. The 

Dependent Variable (Adjusted R Square/ Significance)[Predictors]

ECud PL_EVCudN EVCud_TpudN EVCud_TSpudN

Music (0.157/0.000)[12,4,2] (0.045/0.024)[10] (0.046/0.024)[7] NA

Entertainment (0.120/0.001)[14,5] (0.041/0.000)[3,14] (0.597/0.000)[1,4,6] (0.076/0.005)[10]

Comedy (0.157/0.000)[12,4,2] (0.045/0.024)[10] (0.046/0.024)[7] NA

Sports (0.181/0.000)[14,3] (0.032/0.049)[4] (0.476/0.000)[1,8,6] (0.631/0.000)[10,4,1,7]

Science (0.192/0.000)[12,4] (0.709/0.000)[7,10,1] (0.595/0.000)[1,6] (0.458/0.000)[10,4,12]
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number in the square brackets identifies the predictor that impacts the dependent 

variable. For example, in the “Music” case, Edges_ud, R_ud and PL_TSpudN impact 

ECud. In the “Music” and “Comedy” cases, the independent and the moderating 

variables have no impact on EVCud_TSpudN. The cells marked in orange indicate that, 

although the independent and moderating variables have some impact on the network 

phenomenon variables, their impact is not considered, as their significance (p-value) is 

higher than the significance (p-value) of the Bonferroni-adjusted value (0.000694). 

Table 17: Collective Impact of Independent Variables, Moderating Variables (Network Structure 
and Network Flow Variables) on the Network Phenomenon in Directed Networks 

Predictors: (1) PL_TpdN, (2) PL_TSpdN, (3) S_d, (4) R_d, (5) SMSP_d, (6)GD_d (7) Tpaths_d (8), TSpaths_d, 

(9) AvgPL_d, (10) AvgGL_d, (11) Nodes, (12) Edges_d, (13) Den_d, (14) CC_d, (15) Reciprocity 

 

Table 17 shows that in every case the independent and the moderating variables 

collectively have a significant impact on the network phenomenon variables. In the case 

of “Science”, it can be seen that the independent and the moderating variables 

collectively impact all the network phenomenon variables. The cells marked in orange 

indicate that, although the independent and moderating variables have some impact on 

the network phenomenon variables, their impact is not considered, as their significance 

ECd PL_EVCdN EVCud_TpdN EVCud_TSpdN

Music (0.090/0.002)[9] (0.303/0.000)[1,7,14,13](0.060/0.011)[15] (0.061/0.010)[2]

Entertainment (0.362/0.000)[7,15] (0.456/0.000)[6,15] (0.239/0.000)[2,6] (0.235/0.000)[2,6]

Comedy (0.246/0.000)[3,4,15](0.546/0.000)[1,7,15] (0.132/0.001)[12,15](0.140/0.000)[12,15]

Sports (0.229/0.000)[10] (0.077/0.005)[2] (0.108/0.001)[2] (0.561/0.000)[6,15]

Science (0.411/0.000)[3,12,15](0.609/0.000)[3,11,15](0.231/0.000)[6,10] (0.233/0.000)[6,10]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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(p-value) is higher than the significance (p-value) of the Bonferroni-adjusted value 

(0.000694). 

   Table 18: Collective Impact of Independent Variables, Moderating Variables (Network 
Structure and Network Flow Variables) on the Network Phenomenon in Consumption Networks 

Predictors: (1) PL_TpinN, (2) PL_TSpinN, (3) S_con, (4) R_con, (5) SMSP_d, (6) GD_d, (7) Tpaths_d, (8) 
TSpaths_d, (9) AvgPL_d, (10) AvgGL_d, (11) Nodes, (12) Edges_d, (13) Den_d, (14) CC_d, (15) Reciprocity 

 

Table 18 shows that in every case the independent and the moderating variables 

collectively have a significant impact on the network phenomenon variables. In the case 

of “Science”, the independent and the moderating variables have no impact on 

PL_EVCinN. The cells marked in orange indicate that, although the independent and 

moderating variables have some impact on the network phenomenon variables, their 

impact is not considered, as their significance (p-value) is higher than the significance (p-

value) of the Bonferroni-adjusted value (0.000694). 

 

 

 

 

Dependent Variable (Adjusted R Square/ Significance)[Predictors]

Ecin PL_EVCinN EVCin_TpinN EVCin_TSpinN

Music (0.199/0.000)[4,15,1] (0.064/0.009)[14] (0.274/0.000)[6,7] (0.144/0.001)[4,6,7]

Entertainment (0.325/0.000)[7,15] (0.381/0.000)[1,14,15] (0.092/0.005)[3,11] (0.149/0.000)[3,8]

Comedy (0.409/0.000)[4,12,15] (0.325/0.000)[4,15] (0.188/0.000)[12,15] (0.200/0.000)[12,15]

Sports (0.441/0.000)[15,8,2,14] (0.306/0.000)[2,15] (0.144/0.000)[13] (0.169/0.000)[13]

Science (0.308/0.000)[8,15] NA (0.262/0.000)[4,10] (0.262/0.000)[4,10]
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Table 19 : Collective Impact of Independent Variables, Moderating Variables (Network 
Structure and Network Flow Variables) on the Network Phenomenon in Propagation Networks 

Predictors: (1) PL_TpoutN, (2) PL_TSpoutN, (3) S_pro, (4) R_pro, (5)SMSP_d, (6),GD_d (7) Tpaths_d (8), 
TSpaths_d, (9) AvgPL_d, (10) AvgGL_d, (11) Nodes, (12) Edges_d, (13) Den_d, (14) CC_d, (15) Reciprocity 

 

Table 19 shows that in every case the independent and the moderating variables 

collectively have a significant impact on the network phenomenon variables. In case of 

“Science” the independent and the moderating variables have no impact on 

EVCout_TSpoutN. The cells marked in orange indicate that, although the independent 

and moderating variables have some impact on the network phenomenon variables, 

their impact is not considered, as their significance (p-value) is higher than the 

significance (p-value) of the Bonferroni-adjusted value (0.000694). 

5.5.2 Impact of Network Structure on Network Flows 

In this section, I present results that address research question RQ1: Does 

network structure impact network flows in a social network that primarily exists online? 

In order to do so, I address hypothesis HP1a, HP1b, HP1c and HP1d for the product 

categories of “Music”, “Entertainment”, “Comedy”, “Sports” and “Science”.  The details 

of the regression analysis are provided in Appendix A (A.1.7.1.3.1, A.1.7.2.3.1, 

A.1.7.3.3.1, A.1.7.4.3.1, A.2.7.1.3.1, A.2.7.2.3.1, A.2.7.3.3.1, A.2.7.4.3.1, A.3.7.1.3.1, 

Ecout PL_EVCoutN EVCout_TpoutN EVCout_TSpoutN

Music (0.328/0.000)[15] (0.487/0.000)[8,14,15] (0.316/0.000)[4,9,11] (0.358/0.000)[4,9,11]

Entertainment (0.325/0.000)[7,15] (0.413/0.000)[2,15] (0.466/0.000)[4,13] (0.495/0.000)[1,4,13]

Comedy (0.328/0.000)[15] (0.487/0.000)[8,14,15] (0.316/0.000)[4,9,11] (0.358/0.000)[4,9,11]

Sports (0.462/0.000)[1,8,15] (0.411/0.000)[1,6,15] (0.256/0.000)[8] (0.298/0.000)[8]

Science (0.308/0.000)[7,15] (0.577/0.000)[8,15] (0.065/0.009)[15] NA

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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A.3.7.2.3.1, A.3.7.3.3.1, A.3.7.4.3.1, A.4.7.1.3.1, A.4.7.2.3.1, A.4.7.3.3.1, A.4.7.4.3.1, 

A.6.7.1.3.1, A.6.7.2.3.1, A.6.7.3.3.1, A.6.7.4.3.1) 

Hypothesis 1a (HP1a): The structural characteristics of a non-directional social 

network impact its network flows. 

Table 20: Regression Analysis (Network Structure – Network Flows) Undirected Networks 

Predictors: (1) PL_TpudN, (2) PL_TSpudN, (3) S_ud, (4) R_ud, (5) SMSP_ud 

 

Table 20 shows that the network structure has a significant impact on the 

network flow variables in the undirected networks for all the product categories. In case 

of “Music”, the network structure variables do not impact the GD_ud and AvgPL_ud. 

The cells marked in orange indicate that, although the predictors  have some impact on 

the network flow variables, their impact is not considered, as their significance (p-value) 

is higher than the significance (p-value) of the Bonferroni-adjusted value (0.000694). In 

all other instances in the above table, the statistical significance (p-value) is less than or 

equal to 0.000694. Therefore, hypothesis 1a is confirmed for all cases in the undirected 

networks.  

GD_ud Tpaths_ud TSpaths_ud AvgPL_ud AvgGL_ud

Music NA (0.093/0.005)[3,4] (0.254/0.000)[3,5,2] NA (0.287/0.000)[1,2,4,5]

Entertainment (0.477/0.000)[3,4] (0.523/0.000)[1,3,4] (0.501/0.000)[2,3,4] (0.477/0.000)[3,4] (0.406/0.000)[3,4]

Comedy (0.410/0.000)[4] (0.396/0.000)[3,4] (0.634/0.000)[3,4,5] (0.407/0.000)[4] (0.521/0.000)[3,4]

Sports (0.522/0.000)[3,4] (0.534/0.000)[3,4,5] (0.462/0.000)[1,2,3,5] (0.524/0.000)[3,4] (0.337/0.000)[1,4]

Science (0.307/0.000)[3,4] (0.379/0.000)[3,4] (0.537/0.000)[3,4] (0.309/0.000)[3,4] (0.412/0.000)[2,4]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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Hypothesis 1b (HP1b): The structural characteristics of a directional social 

network impact its network flows. 

Table 21: Regression Analysis (Network Structure – Network Flows) Directed Networks 

Predictors: (1) PL_TpdN, (2) PL_TSpdN, (3) S_d, (4) R_d, (5) SMSP_d 

 

Table 21 shows that the network structure has a significant impact on the 

network flow variables in the directed networks for all product categories. In case of 

“Science”, the network structure variables do not impact the AvgPL_d and AvgGL_d. In 

case of “Comedy”, the network structure variables do not impact the AvgPL_d. The cells 

marked in orange indicate that, although the predictors  have some impact on the 

network flow variables, their impact is not considered, as their significance (p-value) is 

higher than the significance (p-value) of the Bonferroni-adjusted value (0.000694). In all 

other instances in the above table, the statistical significance (p-value) is less than or 

equal to 0.000694.Therefore, hypothesis 1b is confirmed for all cases in the directed 

network.  

GD_d Tpaths_d TSpaths_d AvgPL_d AvgGL_d

Music (0.127/0.000)[4] (0.052/0.017)[1] (0.227/0.000)[1,5] (0.156/0.000)[1,4] (0.079/0.010)[4,5]

Entertainment (0.252/0.000)[1,3] (0.306/0.000)[3] (0.351/0.000)[3] (0.234/0.000)[3,5] (0.333/0.000)[1,3,5]

Comedy (0.102/0.001)[4] (0.398/0.000)[3,4] (0.426/0.000)[3,4] NA (0.037/0.039)[4]

Sports (0.312/0.000)[1,5] (0.336/0.000)[3,5] (0.303/0.001)[3,5] (0.426/0.000)[1,5] (0.256/0.000)[2,3,5]

Science (0.139/0.000)[1] (0.190/0.000)[3] (0.193/0.000)[3] NA NA

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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Hypothesis 1c (HP1c): The structural characteristics of a directional social 

network impact its network flows in the consumption phase. 

 

Table 22: Regression Analysis (Network Structure – Network Flows) Consumption Networks 

Predictors: (1) PL_TpinN, (2) PL_TSpinN, (3) S_con, (4) R_con, (5) SMSP_d 

 

 

Table 22 shows that the network structure has a significant impact on the 

network flow variables in the consumption networks for all the product categories.  In 

case of “Comedy”, the network structure variables do not impact TSpaths_d. The cells 

marked in orange indicate that, although the predictors  have some impact on the 

network flow variables, their impact is not considered, as their significance (p-value) is 

higher than the significance (p-value) of the Bonferroni-adjusted value (0.000694). In all 

other instances in the above table, the statistical significance (p-value) is less than or 

equal to 0.000694. Therefore, hypothesis 1c is confirmed for all cases in consumption 

network. 

GD_d Tpaths_d TSpaths_d AvgPL_d AvgGL_d

Music (0.204/0.000)[1,4] (0.411/0.000)[1,2,4] (0.595/0.000)[1,2,3,5] (0.407/0.000)[1,4] (0.076/0.005)[4]

Entertainment (0/137/0.000)[2] (0.115/0.002)[4,5] (0.116/0.002)[4,5] (0.223/0.000)[4,5] (0.373/0.000)[4,5]

Comedy (0.210/0.000)[3,4] (0.095/0.000)[1,3] NA 0,230/0.000)[3] (0.281/0.000)[1,3,4]

Sports (0.287/0.000)[1,5] (0.267/0.000)[4,5] (0.162/0.000)[4,5] (0.450/0.000)[1,5] (0.327/0.000)[4,5]

Science (0.285/0.000)[4] (0.558/0.000)[2,3,4] (0.543/0.000)[2,3,4] (0.484/0.000)[2,3,4] (0.456/0.000)[2,3,4]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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Hypothesis 1d (HP1d): The structural characteristics of a directional social 

network impact its network flows in the propagation phase. 

Table 23: Regression Analysis (Network Structure – Network Flows) Propagation Networks 

Predictors: (1) PL_TpoutN, (2) PL_TSpoutN, (3) S_pro, (4) R_pro, (5) SMSP_d 

 

 

Table 23 shows that network structure has a significant impact on the network 

flow variables in the propagation networks for all the product categories. The cells 

marked in orange indicate that, although the predictors  have some impact on the 

network flow variables, their impact is not considered, as their significance (p-value) is 

higher than the significance (p-value) of the Bonferroni-adjusted value (0.000694). In all 

other instances in the above table, the statistical significance (p-value) is less than or 

equal to 0.000694. Therefore, hypothesis 1d is confirmed for all cases in propagation 

network.  

5.5.3 Impact of Network Flows on Network Structure 

In this section, I present results that address the research question RQ2: Does 

network flow impact network structure in a social network that primarily exists online? 

In order to do so I address hypothesis HP2a, HP2b, HP2c and HP2d for the product 

GD_d Tpaths_d TSpaths_d AvgPL_d AvgGL_d

Music (0.234/0.000)[4] (0.034/0.045)[4] (0.035/0.043)[3] (0.240/0.000)[4] (0.416/0.000)[3,4]

Entertainment (0.227/0.000)[1,4] (0.107/0.003)[2,5] (0.143/0.001)[2,3,5] (0.120/0.001)[2,5] (0.197/0.000)[2,5]

Comedy (0.240/0.000)[4] (0.034/0.045)[4] (0.035/0.043)[3] (0.240/0.000)[4] (0.416/0.000)[3,4]

Sports (0.369/0.000)[4] (0.205/0.000)[5] (0.075/0.005)[5] (0.449/0.000)[4,5] (0.342/0.000)[4,5]

Science (0.054/0.015)[4] (0.113/0.001)[4] (0.109/0.001)[4] (0.377/0.000)[4] (0.361/0.00)[4]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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categories of “Music”, “Entertainment”, “Comedy”, “Sports” and “Science”.  The details 

of the regression analysis are provided in Appendix A (A.1.7.1.3.2, A.1.7.2.3.2, 

A.1.7.3.3.2, A.1.7.4.3.2, A.2.7.1.3.2, A.2.7.2.3.2, A.2.7.3.3.2, A.2.7.4.3.2, A.3.7.1.3.2, 

A.3.7.2.3.2, A.3.7.3.3.2, A.3.7.4.3.2, A.4.7.1.3.2, A.4.7.2.3.2, A.4.7.3.3.2, A.4.7.4.3.2, 

A.6.7.1.3.2, A.6.7.2.3.2, A.6.7.3.3.2, A.6.7.4.3.2) 

Hypothesis 2a (HP2a): Network flows impact the structural characteristics of a 

non-directional social network. 

Table 24: Regression Analysis (Network Flows – Network Structure) Undirected Networks 

Predictors: (6) GD_ud, (7) Tpaths_ud, (8) TSpaths_ud, (9) AvgPL_ud, (10) AvgGL_ud 

 

Table 24 shows that the network flow has a significant impact on the network 

structure variables in the undirected networks for all the product categories. In case of 

“Music”, the network flow variables do not impact S_ud and SMSP_ud. In 

“Entertainment”, the network flow variables do not impact SMSP_ud. In “Comedy”, the 

network flow variables do not impact PL_TSpudN. In “Science”, the network flow 

variables have no impact on PL_TpudN. The cells marked in orange indicate that, 

although the predictors have some impact on the network structure variables, their 

impact is not considered, as their significance (p-value) is higher than the significance (p-

 PL_TpudN PL_TSpudN S_ud R_ud SMSP_ud

Music (0.040/0.032)[7] (0.0105/0.001)[10] NA (0.167/0.000)[10,8] NA

Entertainment (0.212/0.000)[6,7] (0.207/0.000)[7] (0.559/0.000)[8,10] (0.496/0.000)[6,8] NA

Comedy (0.138/0.000)[6] NA (0.694/0.000)[8,10] (0.612/0.000)[8,10] (0.052/0.017)[7]

Sports (0..083/0.000)[6,9] (0.146/0.000)[10] (0.572/0.000)[8,10] (0.474/0.000)[9] (0.120/0.000)[9]

Science NA (0.136/0.000)[8] (0.693/0.000)[7,8,10] (0.392/0.000)[9] NA

Dependent Variable (Adjusted R Square/ Significance)
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value) of the Bonferroni-adjusted value (0.000694). In all other instances in the above 

table, the statistical significance (p-value) is less than or equal to 0.000694. Therefore, 

hypothesis 2a is confirmed for all cases in undirected network.  

Hypothesis 2b (HP2b): Network flows impact the structural characteristics of a 

directional social network. 

Table 25: Regression Analysis (Network Flows – Network Structure) Directed Networks 

Predictors: (6) GD_d, (7) Tpaths_d, (8) TSpaths_d, (9) AvgPL_d, (10) AvgGL_d 

 

Table 25 shows that the network flow has a significant impact on the network 

structure variables in the directed networks for all the product categories. In cases of 

“Entertainment”, “Comedy”, “Sports” and “Science” network flow variables have no 

impact on SMSP_d. The cells marked in orange indicate that, although the predictors 

have some impact on the network structure variables, their impact is not considered, as 

their significance (p-value) is higher than the significance (p-value) of the Bonferroni-

adjusted value (0.000694). In all other instances in the above table, the statistical 

significance (p-value) is less than or equal to 0.000694. Therefore, hypothesis 2b is 

confirmed for all cases in directed network.  

 PL_TpdN PL_TSpdN S_d R_d SMSP_d

Music (0.103/0.003)[8,10] (0.163/0.000)[8,10] (0.142/0.000)[8] (0.226/0.000)[6,8] (0.090/0.002)[8]

Entertainment (0.253/0.000)[6,8] (0.251/0.000)[6,7] (0.351/0.000)[7] (0.326/0.000)[6,8] NA

Comedy (0.208/0.000)[6,7] (0.211/0.000)[6,8] (0.529/0.000)[8,10] (0.204/0.000)[6,8,10] NA

Sports (0.350/0.000)[6,7] (0.281/0.000)[6,7] (0.472/0.000)[8,9] (0.386/0.000)[6,8] NA

Science (0.139/0.000)[6] (0.111/0.001)[6] (0.193/0.000)[8] (0.149/0.000)[6,8] NA

Dependent Variable (Adjusted R Square/ Significance)
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Hypothesis 2c (HP2c): Network flows impact the structural characteristics of a 

directional social network in the consumption phase. 

Table 26: Regression Analysis (Network Flows – Network Structure) Consumption Networks 

Predictors: (6) GD_d, (7) Tpaths_d, (8) TSpaths_d, (9) AvgPL_d, (10) AvgGL_d  

 

Table 26 shows that the network flow has a significant impact on the network 

structural variables in consumption networks for all the product categories. In cases of 

“Entertainment”, “Comedy”, “Sports” and “Science” network flow variables have no 

impact on SMSP_d. Network flow variables in “Comedy” do not impact PL_TpinN and 

PL_TSpinN. The cells marked in orange indicate that, although the predictors have some 

impact on the network structure variables, their impact is not considered, as their 

significance (p-value) is higher than the significance (p-value) of the Bonferroni-adjusted 

value (0.000694). In all other instances in the above table, the statistical significance (p-

value) is less than or equal to 0.000694. Therefore, hypothesis 2c is confirmed for all 

cases in consumption network.  

 PL_TpinN PL_TSpinN S_con R_con SMSP_d

Music (0.270/0.000)[7] (0.265/0.000)[8] (0.360/0.000)[8,10] (0.300/0.000)[7,9] (0.087/0.003)[8]

Entertainment (0.181/0.000)[6,7] (0.205/0.000)[6,7] (0.345/0.000)[6,10] (0.287/0.000)[10]  NA

Comedy NA NA (0.157/0.000)[6] (0.100/0.001)[6]  NA

Sports (0.218/0.000)[6,7] (0.216/0.000)[6,7] (0.049/0.020)[10] (0.102/0.000)[8]  NA

Science (0.037/0.038)[10] (0.086/0.003)[10] (0.220/0.000)[9] (0.475/0.000)[6,7]  NA

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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Hypothesis 2d (HP2d): Network flows impact the structural characteristics of a 

directional social network in the propagation phase. 

Table 27: Regression Analysis (Network Flows – Network Structure) Propagation Networks 

Predictors :( 6) GD_d, (7) Tpaths_d, (8) TSpaths_d, (9) AvgPL_d, (10) AvgGL_d 

 

Table 27 shows that the network flow has a significant impact on the network 

structure variables in the propagation networks for all the product categories. . In cases 

of “Music”, “Entertainment”, “Comedy”, “Sports” and “Science” network flow variables 

have no impact on SMSP_d. The cells marked in orange indicate that, although the 

predictors have some impact on the network structure variables, their impact is not 

considered, as their significance (p-value) is higher than the significance (p-value) of the 

Bonferroni-adjusted value (0.000694). In all other instances in the above table, the 

statistical significance (p-value) is less than or equal to 0.000694. Therefore, hypothesis 

2d is confirmed for all cases in propagation network.  

5.5.4 Impact of Network Structure on Network Phenomenon 

In this section, I present results that address the research question RQ3: Does 

network structure impact influence within an online social network?   In order to do so, I 

address hypothesis HP3a, HP3b, HP3c and HP3d for the product categories of “Music”, 

 PL_TpoutN PL_TSpoutN S_pro R_pro SMSP_d

Music (0.050/0.019)[6] (0.058/0.013)[6] (0.392/0.000)[7,10] (0.386/0.000)[6,7,10] NA

Entertainment (0.214/0.000)[6,7] (0.171/0.000)[6] (0.204/0.000)[6,8] (0.315/0.000)[6,8] NA

Comedy (0.050/0.019)[6] (0.058/0.013)[6] (0.114/0.001)[6] (0.386/0.000)[6,7,10] NA

Sports (0.057/0.013)[6] (0.034/0.044)[6] (0.115/0.001)[6] (0.354/0.000)[6,8] NA

Science (0.046/0.023)[6] (0.041/0.031)[6] (0.297/0.000)[9] (0.377/0.000)[9] NA

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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“Entertainment”, “Comedy”, “Sports” and “Science”.  The details of the regression 

analysis are provided in Appendix A (A.1.7.1.3.3, A.1.7.2.3.3, A.1.7.3.3.3, A.1.7.4.3.3, 

A.2.7.1.3.3, A.2.7.2.3.3, A.2.7.3.3.3, A.2.7.4.3.3, A.3.7.1.3.3, A.3.7.2.3.3, A.3.7.3.3.3, 

A.3.7.4.3.3, A.4.7.1.3.3, A.4.7.2.3.3, A.4.7.3.3.3, A.4.7.4.3.3, A.6.7.1.3.3, A.6.7.2.3.3, 

A.6.7.3.3.3, A.6.7.4.3.3). 

Hypothesis 3a (HP3a): Network structure impacts influence within an online 

social network in a non-directional social network.  

Table 28: Regression Analysis (Network Structure – Influence) Undirected Networks 

Predictors: (1) PL_TpudN, (2) PL_TSpudN, (3) S_ud, (4) R_ud, (5) SMSP_ud 

 

 

Table 28 shows that the network structure has a significant impact on the 

network phenomenon variables in the undirected networks for all the product 

categories except “Music”. The network structure variables do not impact PL_EVCudN, 

EVCud_TpudN and EVCud_TSpudN in the “Music” category. Though the network 

structure variables have some impact on the ECud in the “Music” category, their impact 

is not considered as the significance (p-value) is higher than the significance (p-value) 

after the Bonferroni adjustment (0.000694). . In cases of “Entertainment” and 

ECud PL_EVCudN EVCud_TpudN EVCud_TSpudN

Music (0.079/0.010)[2,5] NA NA NA

Entertainment(0.091/0.005)[4,5] (0.402/0.000)[4,5] (0.0578/0.000)[1,4] NA

Comedy (0.105/0.003)[1,4] (0.082/0.004)[4] (0.640/0.000)[1] NA

Sports (0.133/0.000)[5] (0.032/0.049)[4] (0.435/0.000)[1,4] (0.045/0.025)[2]

Science (0.042/0.028)[3] (0.160/0.000)[3,4] (0.531/0.000)[1,4] (0.060/0.000)[4]

Dependent Variable (Adjusted R Square/ Significance)
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“Comedy” the network structure variables have no impact on EVCud_TSpudN. The cells 

marked in orange indicate that, although the predictors have some impact on the 

network phenomenon variables, their impact is not considered, as their significance (p-

value) is higher than the significance (p-value) of the Bonferroni-adjusted value 

(0.000694). In all other instances in the above table, the statistical significance (p-value) 

is less than or equal to 0.000694. Therefore, hypothesis 3a is confirmed for all cases in 

undirected network except for the case of “Music”.  

Hypothesis 3b (HP3b): Network structure impacts influence within an online 

social network in a directional social network. 

Table 29: Regression Analysis (Network Structure – Influence) Directed Networks 

Predictors: (1) PL_TpdN, (2) PL_TSpdN, (3) S_d, (4) R_d, (5) SMSP_d 

 

Table 29 shows that the network structure has a significant impact on the 

network phenomenon variables in the directed networks for all the product categories 

except “Music” and “Science”. In “Entertainment” category the network structure 

variables impact EVCd_TpdN and EVCd_TSpdN. In “Comedy” category the network 

structure variables impact only ECd. In the “Sports” category the network structure 

ECd PL_EVCdN EVCd_TpdN EVCd_TSpdN

Music (0.040/0.032)[4] (0.140/0.001)[1,2,5] NA (0.061/0.010)[2]

Entertainment (0.059/0.012)[5] (0.089/0.002)[5] 0.157/0.000)[2,3] (0.123/0.000)[2]

Comedy (0.155/0.000)[3,4] (0.086/0.003)[1] NA NA

Sports NA (0.211/0.000)[1,5] (0.077/0.005)[2] (0.108/0.001)[2]

Science NA (0.058/0.012)[1] (0.056/0.014)[2] (0.056/0.014)[2]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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variables impact only PL_EVCdN. Therefore, hypothesis 3b is confirmed for all cases in 

the directed network except for the product categories of “Music” and “Science”. 

Hypothesis 3c (HP3c): Network structure impacts influence within an online social 

network in a directional social network during the consumption phase. 

Table 30: Regression Analysis (Network Structure – Influence) Consumption Networks 

Predictors: (1) PL_TpinN, (2) PL_TSpinN, (3) S_con, (4) R_con, (5) SMSP_d 

 

Table 30 shows that the network structure has a significant impact on the 

network phenomenon variables in the consumption networks for all product categories 

except “Entertainment” and “Sports”. In the “Music” category the network structure 

variables impact only EVCin_TpinN. In the “Comedy” category the network structure 

variables impact ECin and PL_EVCinN. In the “Science” category the network structure 

variables impact EVCin_TpinN and EVCin_TSpinN. Therefore, hypothesis 3c is confirmed 

only for “Music”, “Comedy” and “Science” categories.  

Dependent Variable (Adjusted R Square/ Significance)[Predictors]

ECin PL_EVCinN EVCin_TpinN EVCin_TSpinN

Music (0.085/0.003)[4] NA (0.234/0.000)[1,2,5] NA

Entertainment NA (0.046/0.024)[1] (0.055/0.014)[3] (0.094/0.002)[3]

Comedy (0.124/0.000)[4] (0.145/0.000)[3] NA NA

Sports (0.117/0.002)[2,3] (0.074/0.005)[2] NA NA

Science NA NA (0.167/0.000)[4] (0.168/0.000)[4]
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Hypothesis 3d (HP3d): Network structure impacts influence within an online 

social network in a directional social network during the propagation phase. 

Table 31: Regression Analysis (Network Structure – Influence) Propagation Networks 

Predictors: (1) PL_TpoutN, (2) PL_TSpoutN, (3) S_pro, (4) R_pro, (5) SMSP_d 

 

 

Table 31 shows that the network structure has a significant impact on the 

network phenomenon variables in the propagation networks for all product categories 

except “Music” and “Comedy”. In “Entertainment” category the network structure 

variables impact EVCout_TpoutN and EVCout_TSpoutN. In “Sports” category the 

network structure variables impact ECout and Pl_EVCoutN. In “Science” category the 

network structure variables impact only ECout. Therefore, hypothesis 3d is confirmed 

only for “Entertainment”, “Sports” and “Science” categories.  

5.5.5 Impact of Network Flows on Network Phenomenon 

In this section, I present results that address the research question RQ4: Does 

network flow impact influence within an online social network?  In order to do so, I 

address hypothesis HP4a, HP4b, HP4c and HP4d for the product categories of “Music”, 

Ecout PL_EVCoutN EVCout_TpoutN EVCout_TSpoutN

Music NA (0.034/0.44)[4] (0.076/0.005)[4] (0.080/0.004)[4]

Entertainment NA (0.128/0.001)[4,5] (0.422/0.000)[2,4] (0.432/0.000)[2,4]

Comedy NA (0.034/0.044)[4] (0.076/0.005)[4] (0.080/0.004)[4]

Sports (0.138/0.000)[1] (0.292/0.000)[1,4] (0.037/0.038)[3] (0.046/0.023)[3]

Science (0.126/0.000)[4] (0.043/0.027)[1] NA NA

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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“Entertainment”, “Comedy”, “Sports” and “Science”.  The details of the regression 

analysis are provided in Appendix A (A.1.7.1.3.4, A.1.7.2.3.4, A.1.7.3.3.4, A.1.7.4.3.4, 

A.2.7.1.3.4, A.2.7.2.3.4, A.2.7.3.3.4, A.2.7.4.3.4, A.3.7.1.3.4, A.3.7.2.3.4, A.3.7.3.3.4, 

A.3.7.4.3.4, A.4.7.1.3.4, A.4.7.2.3.4, A.4.7.3.3.4, A.4.7.4.3.4, A.6.7.1.3.4, A.6.7.2.3.4, 

A.6.7.3.3.4, A.6.7.4.3.4). 

Hypothesis 4a (HP4a): Network flow impacts influence within an online social 

network in a non-directional social network.  

Table 32: Regression Analysis (Network Flow – Influence) Undirected Networks 

Predictors: (6) GD_ud, (7) Tpaths_ud, (8) TSpaths_ud, (9) AvgPL_ud, (10) AvgGL_ud 

 

Table 32 shows that network flow has a significant impact on the network 

phenomenon variables in the undirected networks for all product categories except 

“Music”. In “Entertainment” category the network flow variables impact PL_EVCudN 

and EVCud_TpudN. In “Comedy” category the network flow variables impact 

EVCud_TpudN. In “Sports” category the network flow variables impact EVCud_TpudN 

and EVCud_TSpudN. In “Science” category the network flow variables impact 

PL_EVCudN and EVCud_TSpudN. Therefore, hypothesis 4a is confirmed only for 

“Entertainment”, “Comedy”,” Sports” and “Science” categories. 

ECud PL_EVCudN EVCud_TpudN EVCud_TSpudN

Music (0.062/0.010)[8] (0.045/0.024)[10] (0.045/0.025)[7] NA

Entertainment(0.056/0.013)[8] (0.184/0.000)[8] (0.282/0.000)[6] (0.076/0.005)[10]

Comedy (0.076/0.005)[10] (0.033/0.048)[8] (0.097/0.000)[6] NA

Sports (0.054/0.015)[7] NA (0.167/0.000)[6] (0.0539/0.000)[9,10]

Science (0.033/0.048)[8] (0.740/0.000)[6,8,10] (0.106/0.001)[6] (0.380/0.000)[8.10]

Dependent Variable (Adjusted R Square/ Significance)
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Hypothesis 4b (HP4b): Network flow impacts influence within an online social network in 

a directional social network. 

Table 33: Regression Analysis (Network Flow – Influence) Directed Networks 

Predictors: (6) GD_d, (7) Tpaths_d, (8) TSpaths_d, (9) AvgPL_d, (10) AvgGL_d 

 

 

Table 33 shows that the network flow has a significant impact on the network 

phenomenon variables in the directed networks for all product categories except 

“Music” and “Comedy”. In “Sports” category the network flow variables impact ECd and 

PL_EVCdN. In “Science” category the network flow variables impact PL_EVCdN, 

EVCd_TpdN and EVCd_TSpdN. In “Entertainment” category the network flow variables 

impact ECd, PL_EVCdN, EVCd_TpdN and EVCd_TSpdN. Therefore, hypothesis 4b is 

confirmed only for “Entertainment”,” Sports” and “Science” categories.  

Dependent Variable (Adjusted R Square/ Significance)[Predictors]

ECd PL_EVCdN EVCd_TpdN EVCd_TSpdN

Music (0.090/0.002)[9] (0.051/0.018)[10] NA (0.098/0.004)[8,9]

Entertainment (0.300/0.000)[7] (0.149/0.000)[6] (0.135/0.000)[6] (0.135/0.000)[6]

Comedy NA (0.095/0.002)[9,10] NA NA

Sports (0.229/0.000)[10] (0.413/0.000)[6] NA NA

Science (0.071/0.006)[9] (0.146/0.000)[7] (0.231/0.000)[6,10] (0.233/0.000)[6,10]
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Hypothesis 4c (HP4c): Network flow impacts influence within an online social 

network in a directional social network during the consumption phase. 

Table 34: Regression Analysis (Network Flow – Influence) Consumption Networks 

Predictors: (6) GD_d, (7) Tpaths_d, (8) TSpaths_d, (9) AvgPL_d, (10) AvgGL_d 

 

 

Table 34 shows that network flow has a significant impact on the network 

phenomenon variables in the consumption networks for all product categories except 

“Comedy”. In the “Music” and the “Entertainment” categories, the network flow 

variables do not impact PL_EVCinN. The cells marked in orange indicate that, although 

the predictors have some impact on the network phenomenon variables, their impact is 

not considered, as their significance (p-value) is higher than the significance (p-value) of 

the Bonferroni-adjusted value (0.000694). In all other instances in the above table, the 

statistical significance (p-value) is less than or equal to 0.000694. Therefore, hypothesis 

4c is confirmed only for the “Music”, “Entertainment”,” Sports” and “Science” 

categories.  

Ecin PL_EVCinN EVCin_TpinN EVCin_TSpinN

Music (0.034/0.044)[8] NA (0.274/0.000)[6,7] (0.101/0.003)[6,8]

Entertainment (0.268/0.000)[7] NA (0.070/0.007)[8] (0.128/0.000)[8]

Comedy (0.064/0.009)[9] (0.047/0.022)[9] (0.066/0.008)[8] (0.071/0.006)[8]

Sports (0.245/0.000)[10] (0.139/0.000)[6] (0.112/0.002)[8,9] (0.104/0.001)[8]

Science (0.097/0.002)[7] (0.044/0.025)[9] (0.205/0.000)[10] (0.205/0.000)[10]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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Hypothesis 4d (HP4d): Network flow impacts influence within an online social 

network in a directional social network during the propagation phase. 

Table 35: Regression Analysis (Network Flow – Influence) Propagation Networks 

Predictors: (6) GD_d, (7) Tpaths_d, (8) TSpaths_d, (9) AvgPL_d, (10) AvgGL_d 

 

Table 35 shows that the network flow has a significant impact on the network 

phenomenon variables in the propagation networks for all product categories. For all 

the product categories the network flow variables impact PL_EVCoutN. The cells marked 

in orange indicate that, although the predictors have some impact on the network 

phenomenon variables, their impact is not considered, as their significance (p-value) is 

higher than the significance (p-value) of the Bonferroni-adjusted value (0.000694). In all 

other instances in the above table, the statistical significance (p-value) is less than or 

equal to 0.000694.Therefore, hypothesis 4d is confirmed for all cases in propagation 

network.  

Ecout PL_EVCoutN EVCout_TpoutN EVCout_TSpoutN

Music (0.064/0.009)[9] (0.142/0.000)[6,7] (0.058/0.013)[7] (0.119/0.001)[7]

Entertainment (0.268/0.000)[7] (0.136/0.000)[6] (0.226/0.000)[6,8] (0.217/0.000)[6,8]

Comedy (0.064/0.009)[10] (0.142/0.000)[6,7] (0.058/0.013)[7] (0.119/0.001)[7]

Sports (0.245/0.000)[10] (0.221/0.000)[6] (0.256/0.000)[8] (0.298/0.000)[8]

Science (0.097/0.002)[7] (0.155/0.000)[7] (0.066/0.008)[7] (0.066/0.008)[7]

Dependent Variable (Adjusted R Square/ Significance)[Predictors]
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5.5.6 Summary of Hypothesis Testing  

Table 36: Summary of Results of Hypothesis 

 

Table 36 summarizes the results of all hypotheses. Cells in green indicate that 

the hypotheses are confirmed, and the cells in red indicate that the hypotheses are 

unconfirmed. Overall, out of 80 hypotheses, 11 are unconfirmed and 69 are confirmed.   

Hypothesis Music Entertainment Comedy Sports Science

Hypothesis 1a(HP1a) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 1b(HP1b) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 1c(HP1c) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 1d(HP1d) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 2a(HP2a) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 2b(HP2b) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 2c(HP2c) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 2d(HP2d) Confirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 3a(HP3a) Unconfirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 3b(HP3b) Unconfirmed Confirmed Confirmed Confirmed Unconfirmed

Hypothesis 3c(HP3c) Confirmed Unconfirmed Confirmed Unconfirmed Confirmed

Hypothesis 3d(HP3d) Unconfirmed Confirmed Unconfirmed Confirmed Confirmed

Hypothesis 4a(HP4a) Unconfirmed Confirmed Confirmed Confirmed Confirmed

Hypothesis 4b(HP4b) Unconfirmed Confirmed Unconfirmed Confirmed Confirmed

Hypothesis 4c(HP4c) Confirmed Confirmed Unconfirmed Confirmed Confirmed

Hypothesis 4d(HP4d) Confirmed Confirmed Confirmed Confirmed Confirmed
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6. Conclusion and Discussion 

In this chapter, I draw conclusions from the results presented in chapter 5. In 

some cases, the conclusions identify the need for further research. Section 6.1, 

discusses the implications identified from the metadata overview. In section 6.2, I 

present conclusions pertaining to network structure, network flows and the network 

phenomenon of interest—influence. In section 6.3, I discuss the implications of 

considering the consumption and propagation networks. In section 6.4, I discuss 

implications of scale. In section 6.5, I provide my conclusions regarding Eigenvector 

Centrality (EVC) as a measure of influence. In section 6.6, I present my conclusions 

regarding the experimental metrics (originally proposed in section 4.3.3.1.4 and 4.3.4.3), 

which pertain to Power Law Distribution of Paths per Node (PL_TpxN), Power Law 

Distribution of Shortest Paths per Node (PL_TSpxN) and Power Law Distribution of 

Eigenvector Centrality (PL_EVCxN). I summarize my conclusions in section 6.7.  

6.1 Conclusions from Metadata Overview 

As suggested in section 4.1.2.2, products categorized as high (in terms of 

popularity) were supposed to generate communities that were bigger in size, both in 

terms of number of tweets and people involved, than products that were categorized 

medium or small. This assumption does not hold true. Therefore, a positive correlation 

between the popularity of a product category and the size of the conversation that the 

product category generates cannot be assumed. “Entertainment”, which was 



www.manaraa.com

185 
 

categorized as “high” based on YouTube popularity, generated 43,377 total tweets 

whereas the “Comedy” category which was categorized as medium generated 94,111 

total tweets over the same period of time.  Similarly, the “Sports” category generated 

more tweets than the “Entertainment” category. This trend can also be seen for the 

community sizes of “Comedy” and “Sports”, both in terms of the number of tweets and 

the number of people involved. When compared to “Entertainment” community, 

“Comedy” and “Sports” had larger number of community participants.  

Twitter communities were generated based on the presence of the word 

“YouTube” and the product category names in a tweet. A product category on YouTube, 

for example “Entertainment”, might encompass various types of videos that do not fall 

under the conversations on Twitter in which the word “Entertainment” is used. For 

example, videos of movie trailers might be grouped under “Entertainment” category on 

YouTube but people talking about the movie trailers on Twitter might not use the word 

“Entertainment” in their tweet.  This may partly be due to the limitations put forth by 

the platform itself (140 character limit on Twitter). However, this might not be the case 

for Music category. People engaged in conversations on Twitter about “Music” may use 

the word “Music” in all of their conversations. As a result, the “Music” conversation 

might generate one large cohesive community while entertainment may spawn multiple 

communities on Twitter.  Therefore, further research is required to understand how 

community definitions translate across various platforms. I identify this as an area for 

future research.  
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6.2 Network Structure, Network Flow and Network Phenomenon  

The essential management question that motivated this research is: “How does 

the relationship between network structure, network flows and the loci of influence 

affect the course of action that marketers should take when they engage with an online 

social network?” In particular, how do network structure and network flows impact each 

other, and how do they impact the phenomenon of influence? In order to address the 

management question, a literature research was conducted in chapter 2 to identify the 

current state of knowledge. Gaps in the state of knowledge and the questions arising 

from the gaps were also presented in chapter2. In chapter3, the scope of the research 

was discussed and an experimental framework was provided (Figure 9). Figure 24 below 

is an extension of Figure 9. It illustrates the conclusions of this dissertation that pertain 

to network structure network, network flows and the network phenomenon of 

influence.   
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Figure 24: Validation of Research Framework 
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Figure 24 shows that the theoretical framework presented in Figure 9 has been 

validated for the five Twitter conversations that correspond to five YouTube product 

lines one to one. As described in section 5.5, at least one predictor variable needed to 

impact at least one dependent variable to confirm a hypothesis. Under these conditions, 

all hypotheses from section 3.3 have been confirmed in more than one case under 

study, but not in all cases under study.  In all five cases under study, network structure 

has an impact on network flow, and conversely. It has also been shown that network 

structure and network flows impact the network phenomenon of influence, but not in 

all instances. In some instances, only network structure impacts influence, in others only 

network flows impact influence. In yet other instances, both network structure and 

network flows impact network influence.   

The ramifications of these findings are perhaps best illustrated by an enhanced 

scrutiny of the “Music” case. Figure 24c shows that both network structure and network 

flows impact influence in the consumption phase. This suggests that someone who 

consumes music through YouTube is influenced by his/her network of people with 

whom they share a common interest on Twitter, i.e. people seem to care from whom 

the information comes. They also care about the content of the propagated 

information. Figure 24d shows that network flows but not network structure impacts 

influence in the propagation phase.  This implies that people in the “Music” network 

care about the information that the community propagates, but they do not care about 

how the community is structured. (They may not even be aware of the community’s 
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structure.) It has been observed section 5.2.2.2 that, in the “Music” category, the 

consumption network is more Scale Free and more Disassortative than the propagation 

network over the whole time period under study. This suggests that music consumers 

get their information from a variety of sources and that they tend connect to people 

who are perceived to be more popular. These details about consumer behavior cannot 

be perceived in Figure 24a and 24b. This suggests that directionality needs to be studied 

to obtain an enhanced understanding of consumer behavior, and that studies of 

directed networks need to differentiate between propagation and the consumption 

phase.   

The above observations are quite significant. They indicate that the impact of the 

network structure on the network flow or the impact of network flow on network 

structure or the impact of network flow and network structure on the network 

phenomenon cannot be taken for granted. As stated in section 2.3, the information 

flowing through a network provides a conceptual universe, within which we can impose 

conceptual constraints like connectedness and relate them to other properties like the 

probability of receiving information. Theoretical constructs that pertain to a particular 

conceptual universe are thus true only within the contextual model of that universe; 

they may be false in a different context (Borgatti and Kidwell, 2011). These constructs 

are derivations of the particular model under consideration, yet, as theories of network 

phenomena show, they are widely misperceived to be unconnected to the theory 

(Borgatti and Kidwell, 2011).  In addition, theoretical constructs that pertain to a 



www.manaraa.com

190 
 

 

particular conceptual universe cannot be considered generic measures or generic 

techniques like regression, which can be divorced from an underlying model of how 

things work (Borgatti, 2005). 

6.3 Consumption and Propagation Networks 

The research in this dissertation shows that within a directed network, the 

consumption and propagation networks can behave very differently from each other. In 

order to elaborate, I show the Scale Free metric and the Assortativity for undirected, 

directed, consumption and propagation networks in the Music category. 

Figure 25: Music Scale Free Metric--(a) Undirected network; (b) Directed network; (c) 

Consumption network; (d) Propagation network 

 

Figure 25 shows the Scale Free metric for the undirected, directed, consumption 

and propagation networks. The Scale Free metrics for the undirected network and the 

directed network are similar, but the Scale Free metric for the consumption and 
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propagation networks are very different. The propagation network is more Scale Free 

than the consumption network by more than two orders of magnitude. The values of 

the Scale Free metrics range between 0 and 1. When the values are closer to 1, it means 

that the networks are more Scale Free. None of the networks are highly Scale Free in 

nature. This means that these networks have hubs in them. However, there is not just 

one hub that is the center of the community. The nodes have a uniform connectivity 

pattern.  

Figure 26: Music Assortativity (a) Undirected Network (b) Directed Network (c) Consumption 
Network (d) Propagation Network 

 

 

Figure 26 shows the Assortativity for the undirected, directed, consumption and 

propagation networks of “Music” conversations. The value of Assortativity ranges 

between -1 and +1. When the values are closer to -1, it means that the networks are 
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Disassortative. The undirected network is more Disassortative than the directed 

network. Among the directed networks, the consumption network is more 

Disassortative than the propagation network. Disassortative means that the nodes in 

the network connect to nodes that are very similar to themselves in connectivity 

pattern. This is true more so in the undirected network and in the consumption network 

than it is in the directed network and the propagation network. This implies that 

Disassortativity of consumption contributes more to the Disassortativity of the directed 

network than the Disassortativity of the propagation does.  

The Scale Free metric and Assortativity indicated that the consumption and 

propagation processes happening within a network are very different, and that they 

cannot be deduced by just analyzing the undirected or directed network. A person who 

might be influential in the consumption process may not be influential in propagation 

process. Also, by considering the consumption and the propagation network, it is 

possible to deduce behavioral traits of a person in the network, which may vary greatly 

from person to person.  For example, which people have a greater propensity to act as 

hubs (Scale Free); to whom do they listen; and to whom do they talk? Do some people 

only listen to people who have similar assortment of connections as they do, but only 

talk to people who have very different assortment of connections? Similar trends in 

Scalefreeness and Assortativity have been observed in the other YouTube categories 

under investigation (see in appendices A.2.4, A.3.4, A.4.4, A.5.4, and A.6.4).  
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6.4 Impact of Scale 

Figure 27 and Figure 28 respectively show the number of nodes (Nodes) and the 

number of (Edges_ud) in the undirected network formed for the “Music”, 

“Entertainment”, “Comedy”, “Sports” and “Science” categories. Figure 29 shows Total 

Paths (Tpaths_ud), Total Shortest Paths (TSpaths_ud), Average Path Length (AvgPL_ud), 

Average Geodesic Length (AvgGL_ud) and Graph Diameters (GD_ud) in the undirected 

network formed for “Music”, “Entertainment”, “Comedy”, “Sports” and “Science” 

categories. From Figure 27 and Figure 28 we can see that the “Music” category 

networks are orders of magnitude larger than the networks formed under any other 

category.  Figure 29 shows that the undirected networks of the “Music” category have 

Total Paths (Tpaths_ud), Total Shortest Paths (TSpaths_ud), Average Path Length 

(AvgPL_ud), Average Geodesic Length (AvgGL_ud) and Graph Diameters (GD_ud) that 

are orders of magnitude higher than the undirected networks of any other product 

category under observation.  This provides an opportunity to study what impact scale 

has on the processes within the networks.  
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Figure 27: Nodes in Undirected Networks 

 

 

Figure 28: Ties in Undirected Networks 
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             Figure 29: Undirected networks (a) Total Paths (b) Total Shortest Paths (c) Average Path 

Length (d) Average Geodesic Length (e) Graph Diameter 
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As stated in section 5.4, a factor analysis was conducted in this study with the 

express goal of identifying processes happening with the networks (undirected, 

directed, consumption and propagation). In order to show the impact of scale, I 

compare the changes in the factors formed by the network flow variables (Spread, 

Spread and Speed) with the factor formed by independent variables (Size) for the 

undirected network of “Music”, “Entertainment”, “Comedy”, “Sports” and “Science” 

categories.  

As shown in section 5.4.1, the factor “Size” consists of the following variables for 

all categories: the total Number of nodes (Nodes) and the total number of ties 

(Edges_ud) in the network. As shown in section 5.4.2, the factor “Spread” consists of the 

following variables: the Graph Diameters (GD_ud), the Total Paths (Tpaths_ud) and the 

Average Path Length (AvgPL_ud).  The factor “Speed” consists of the following variables: 

Total Shortest Paths (TSpaths_ud), and Average Geodesic Length (AvgGL_ud). The factor 

“Spread and Speed” consists of the following variables: Total Paths (Tpaths_ud), Total 

Shortest Paths (TSpaths_ud), Average Path Length (AvgPL_ud), Average Geodesic Length 

(AvgGL_ud) and Graph Diameters (GD_ud). 

                            Table 37: Factors “Size”, “Spread” and “Spread and Speed” Along with their 
Cronbach Alpha Values for Undirected Networks 

 

NETWORK TYPE VARIABLES

Music Entertainment Comedy Sports Science

Independent Size(0.994) Size (0.999) Size (0.995) Size (0.998) Size (0.997)

Network Flow 

(MV2) Spread(0.989)

Spread and 

Speed(0.937)

Spread and 

Speed(0.937)

Spread and 

Speed (0.965)

Spread and 

Speed (0.912)

FACTORS (CRONBACH'S ALPHA)

Undirected
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Table37 above shows the factors formed by the network flow variables (Spread, 

Spread and Speed) and the factor formed by independent variables (Size) for the 

undirected network of “Music”, “Entertainment”, “Comedy”, “Sports” and “Science” 

categories. The factor “Size” has been formed from the variable Nodes and the variable 

Edges_ud across all categories with significant values of Cronbach’s alpha. However, 

different factors form from the network flow variables in different categories. In the 

“Music” category, “Spread” is the only significant factor. The variables that form the 

factor “Speed” either form independent factors or they form a factor with insignificant 

Cronbach’s alpha (<0.60) (see Appendix A.1.7.1.2.3). As the scale of the network reduces 

(Figures 27 and 28), the scale of the variables that form the factors “Speed” and 

“Spread” also reduces (Figure 29). With the reduction of scale, the variables that 

measure the factors “Spread” and “Speed” load together to form a single factor labelled 

“Spread and Speed”. This is mainly because, as the scale of the networks reduces, the 

difference in the magnitude of the variables measuring the processes of “Speed” and 

“Spread” becomes insignificant. As seen in appendices A.1.5, A.2.5, A.3.5, A.4.5 and 

A.6.5, the differences between the values of Total Paths (Tpaths_ud) and Total Shortest 

Paths (TSpaths_ud) in categories of “Entertainment”, “Comedy”, “Science” and “Sports” 

are insignificant, when compared to the differences between the values of Total Paths 

(Tpaths_ud) and Total Shortest Paths (TSpaths_ud) in the “Music” category. Similar 

trends can be seen in the case of the Average Path Length (AvgPL_ud), and the Average 
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Geodesic Length (AvgGL_ud) for all categories in appendices A.1.5, A.2.5, A.3.5, A.4.5, 

and A.6.5. 

These observations imply that the scale of networks has a significant impact on 

the processes that transpire within the networks. An increase or decrease in the scale of 

a social network gives rise to different types of processes within that network. These 

processes are indicative of the presence of very different social mechanisms. This 

suggests that social theories that were developed from observing real-world networks of 

a relatively smaller scale (hundreds or thousands of people) do not necessarily apply to 

online social networks of a significantly larger scale (tens of thousands or millions of 

people). 

6.5 Eigenvector Centrality as a Measure of Influence 

Eigenvector Centrality(EVC) (Bonacich, 1972, Bonacich, 2007) has been proposed 

as a measure of influence in online social networks based on arguments from literature 

that have been made in section 2.7.3. As suggested in section 4.3.4.1, the Correlation 

Coefficient of Eigenvector Centrality with Total Paths and Total Shortest Paths 

(EVCx_TpxN and EVCx_TpxN) has been used as a measure of influence with respect to 

information spread and speed of information spread processes. In this section, I discuss 

the efficacy of using Eigenvector Centrality (EVC) as a measure of influence. 

Figure 30 below depicts the correlation coefficients between Eigenvector 

Centrality with respect to Total Paths from a node (EVCud_TpudN) and Total Shortest 
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Paths from a node (EVCud_TSpudN) for the undirected network of the “Music” 

category. All correlations exhibit a p-value below 0.05. 

         Figure 30 : Music Undirected Networks Correlation Coefficients between Eigenvector 
Centrality vs. Total Paths and Total Shortest Paths 

 

 

Figure 30 shows that there is a significant correlation between the Eigenvector 

Centrality of a node and the total number of paths from a node in the undirected 

network (EVCud_TpudN). There is no significant correlation between Eigenvector 

Centrality of a node and total number of shortest paths from a node in undirected 

network (EVCud_TSpudN). As seen in section 6.3, total number of paths was used as a 

proxy for the “Spread” process and the total number of shortest paths was used as a 

proxy for the “Speed” process. Based on this, it can be said that Eigenvector Centrality 

(EVC) is a good measure of influence in undirected networks when it comes to “Spread” 

process, but is not a very good measure of influence for “Speed” process. A similar trend 
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can be seen in all undirected networks of all product categories under consideration in 

Appendix A (A.1.6.3, A.2.6.3, A.3.6.3, A.4.6.3, A.5.6.3, A.6.6.3) 

As explained in section 6.3, scale also has a significant impact on the “Spread” 

and “Speed” processes, which even unify at reduced scale. Reduction in scale in not just 

evident across categories, but also when undirected and directed networks within a 

category are considered. The reduction in scale across categories is due to the reduction 

in the number of nodes and the number of ties, as shown in Figure 27 and Figure 28 

(section 6.4). The reduction in scale within the undirected and directed networks within 

a category is only due to the number of ties. As explained in section 5.2.1, this is mainly 

because in an undirected network every directed tie is considered to be symmetric. 

Hence every tie is counted twice, except for the ties that are already symmetric in the 

directed network. The impact of this reduction in scale within networks can be seen on 

the total paths and total shortest paths formed with respect to the undirected and 

directed networks. For example, as shown in Figure 31 below, in the “Music” category 

the difference between the Total Paths and Total Shortest Paths is significantly lower for 

the directed network than it is for the undirected network. The number of Total Paths 

and the number of Total Shortest Paths map very closely with each other in the directed 

network. This trend can be seen for all product categories in Appendix A (A.1.5, A.2.5, 

A.3.5, A.4.5, A.5.5 and A.6.5) 
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      Figure 31: Music Category Total Paths and Total Shortest in Undirected and Directed 

Network 

 

The impact of this reduction of scale in the directed network on the directed 

eigenvector centrality in the Music category can be seen in Figure 32 below. All 

correlations exhibit a p-value below 0.05. 

          Figure 32 : Music Directed Networks Correlation Coefficients between Eigenvector 
Centrality vs. Total Paths and Total Shortest Paths 

 

In Figure 32 above, the eigenvector centrality correlates significantly more often 

with the total paths per node than with total shortest paths per node (EVCd_TpdN > 

EVCd_TSpdN) (there are more blue lines and red lines in Figure 32).  On the days on 

which the Eigenvector Centrality correlates with both Total Paths per Node 
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(EVCd_TpdN) and Total Shortest Paths per Node (EVCd_TSpdN), the difference between 

Total Paths and Total Shortest Paths in the directed network is negligible (see Figure 32). 

This trend can be seen in Appendix A (A.1.1.5, A.2.1.5, A.3.1.5, A.4.1.5, A.5.1.5 and 

A.6.1.5) for all categories under consideration. Therefore, it can be confidently said that 

Eigenvector Centrality (EVC) is a measure of influence only with respect to Total Paths 

per Node (Spread) but not for Total Shortest Paths per Node (Speed). Further research 

needs to be undertaken to identify metrics of measuring influence for various processes. 

6.6 Experimental Metrics 

The experimental metrics Power Law Distribution of Total Paths per Node 

(PL_TpxN), Power Law Distribution of Shortest Paths per Node (PL_TSpxN), and Power 

Law Distribution of Eigenvector Centrality (PL_EVCxN), were proposed in section 

4.3.3.1.4 and 4.3.4.3. Table 38 below shows the output of regression for all product 

categories and all network types (undirected, directed, consumption and propagation). 

Table38 (a) shows if the network flow variables impact the Power Law Distribution of 

Total Paths per Node (PL_TpxN). Table38 (b) shows if the network flow variables impact 

the Power Law Distribution of Shortest Paths per Node (PL_TSpxN). In case an impact 

exists, the value in the table is represented by “Y”, else it is represented by “N”. Table38 

(c) shows whether the network flow variables (NF) and the network structure variables 

(NS) impact the Power Law Distribution of Eigenvector Centrality (PL_EVCxN). “N” 

represents a lack of impact. 



www.manaraa.com

203 
 

 

Table 38: Impact of Network Flow and Network Structure Variables on Power Law Distribution 
(a) Impact of Network Flow Variables on Power Law Distribution of Total Paths per Node, (b) 

Impact of Network Flow Variables on Power Law Distribution of Total Shortest Paths per Node, 
(c) Impact of Network Flow Variables (NF) and Network Structure Variables (NS on Power Law 

Distribution of Eigenvector Centrality per Node. 

 

From Table 38 above, it can be seen that network flow variables have a 

significant impact on of Power Law Distribution of Total Paths per Node (PL_TpxN), 

Power Law Distribution of Shortest Paths per Node (PL_TSpxN). However, there is 

nothing in the analysis that shows the cause of the impact. Similarly, the network flow 

variables (NF) and network structure variables (NS) have a significant impact on Power 

Law Distribution of Eigenvector Centrality (PL_EVCxN). But there is nothing in the 

analysis that shows the cause of impact. Therefore, I conclude that more 

experimentation needs to be undertaken (as part of future research) to understand the 

cause of the various impacts shown in Table 37.  
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6.7 Summary of Conclusions 

In this section, I summarize and restate the conclusions of my dissertation.  

Conclusion 1: The size and degree of activity of online communities that discuss product 

lines are not necessarily correlated to the popularity of the product lines that they 

discuss.   

Conclusion 2: The impact of network structure on network flow, the impact of network 

flow on network structure and the impact of network flow and network structure on the 

network phenomenon do exist, but their impact cannot be taken for granted.  

Conclusion 3: The nature of influence within a social network cannot be understood by 

just analyzing the undirected or directed network. A person who might be influential in 

the consumption process may not be influential in propagation process, or conversely. 

Also, by considering the consumption and the propagation network, it is possible to 

deduce behavioral traits of a person in the network.  

Conclusion 4: The scale of a network has a significant impact on the processes that 

transpire within the network. An increase or decrease in the scale of the network gives 

rise to different types of processes within a social network that are indicative of the 

presence of very different social mechanisms. Social theories that were developed from 

observing real-world networks of a relatively small scale (hundreds or thousands of 

people) consequently do not necessarily apply to online social networks, which can 

exhibit significantly larger scale (tens of thousands or millions of people). 

Conclusion 5: Eigenvector Centrality (EVC) is a measure of influence only with respect to 

Total Paths per Node (Spread) but not for Total Shortest Paths per Node (Speed).   

Conclusion 6: The introduction of new experimental metrics warrants further research.  
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7. Contributions and Limitations 

People all around the world are utilizing online social networks at an astonishing 

rate, and today’s marketers are responding to the increasing importance of online social 

networks by spending billions of dollars in digital marketing. With increased spending on 

social media, businesses are feeling the pressure to gain new insights into customer 

behavior. Success in marketing though online social media apparently critically depends 

upon understanding the social network that may have a potential interest in your 

product or service and by identifying the key attributes about the influencers that will 

spread your marketing message (Lindsay et al.,2014). Yet, this is easier said than done, 

because to date nobody really understands how online social networks get organized. 

Enhancing this understanding has been the primary focus of this dissertation. 

7.1 Academic Contributions  

This dissertation makes contributions to various academic research streams 

within the fields of technology management including organizational theory, marketing 

and social network theory. 

7.1.1 Organizational Theory and Technology Management  

The primary theoretical contribution of this dissertation has resulted from 

addressing the stated research questions (section 2.8) and testing the hypotheses that 

have been derived therefrom (section 3.3). The results of the empirical portion of this 
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dissertation suggest that network structure consistently impacts network flows, and 

network flows consistently impact network structure (see Figure 33). If this finding can 

be confirmed in other online contexts, then a fundamental property of online social 

networks may have been identified in this dissertation. 

Figure 33: Impact of Network Structure on Network Flow and Vice Versa. 

 

 

 

 

Specifically, confirming hypotheses 1 and 2 has provided concrete evidence that 

confirms the Theory of Structuration (Giddens, 1984, Orlikowski, 2000) in online social 

networks. This theory has been proven in a variety of technology management contexts 

(DeSanctis and Poole, 1994), (Orlikowski, 2000, Pozzebon and Pinsonneault, 2005, 

Walsham and Han, 1990) as well as in organization science (Van de Ven and Poole, 2005, 

Barley and Tolbert, 1997) and business strategy (Jarzabkowski, 2004, Biazzo, 2009). 

However, until now it had not been validated in online social networks. Once again, 

further study of online networks is warranted to establish whether structuration 

constitutes a broadly-based attribute of online social networks.  

Network 

Structure 

Information  

Flow 
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7.1.2 Marketing 

Success in marketing on social networks depends upon identifying people who 

can influence the purchasing behavior of others (Brown and Hayes, 2008, Weiss, 2013, 

Kirby, 2012, Murphy and Schram, 2014). As of today, the measurement of influence in 

social networks has been based either the level of connectedness and/or the level of 

participation within the social network (Aral and Walker, 2011, Aral and Walker, 2012, 

Chomutare et al., 2014, Sasidharan et al., 2011). However, these measures of influence 

do not describe or predict this network phenomenon very well, and studies that 

characterize influence and the mechanisms that impact this network phenomenon are 

woefully lacking (Aral et al., 2013).  

This dissertation makes an academic contribution by providing an empirically 

tested framework that can provide insights into the mechanisms (network flows and 

network structure) that impact the network phenomenon of influence. Confirming 

hypothesis 3 and 4 clearly shows that influence is impacted by network structure in 

some cases; network flows in others and by both network structure and network flows, 

in yet others. Further research needs to be undertaken to understand why network 

flow, network structure or both network structure and network flows impact 

phenomenon in only some cases and not in others. These findings need to be tested on 

various social network platforms, in order to understand whether they are broadly 

applicable.  
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This study is also the first of its kind, to the best of my knowledge, which looks at 

the impact of consumption and propagation of information on the network 

phenomenon of influence in social networks (conclusion 3). This study was able to 

demonstrate that network structure, network flows and their impact on influence vary 

signifcantly between these two modes of directionality. As a consequence, theories of 

online social networks, and perhaps theories social networks in general, will henceforth 

have to take propagation and consumption into consideration.   

This dissertation also shows the impact of scale on the processes that transpire 

within the network (conclusion 4). An increase or decrease in the scale of the network 

gives rise to different types of processes within a social network that are indicative of 

the presence of very different social mechanisms. This observation casts severe doubt 

on whether extant theories of social networks, which are derived from observations of 

comparatively smaller social networks from the real world, apply to online social 

networks.  

7.1.3 Social Network Theory 

In earlier theories of social networks (e.g., Freeman, 1977, Freeman, 1979), 

measures of influence were  based on connectivity within a network (section 2.7). More 

recent theories (e.g., Bonacich, 2007) introduced the quality of connectivity to measure 

influence using mesures such as Eigenvector Centrality. This lead to a better 

identification of the status of an individual within the network. 
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This dissertation points out the limitations of Eigenvector Centrality as a 

measure of phenomenon of influence within the social network (conclusion 5). There is 

a significant correlation between the Eigenvector Centrality of a node and the total 

number of paths from that node in the undirected network (EVCud_TpudN). There is no 

significant correlation between the Eigenvector Centrality of a node and the total 

number of shortest paths from a node in undirected network (EVCud_TSpudN). As seen 

in section 6.3, total number of paths was used as a proxy for the “Spread” process and 

the total number of shortest paths was used as a proxy for the “Speed” process. Based 

on this, it can be said that Eigenvector Centrality (EVC) is a good measure of influence in 

undirected networks when it comes to the “Spread” process, but is not a very good 

measure of influence for the “Speed” process. This finding casts severe doubt on 

theories of social networks that use EVC as a metric of influence for processes in which 

the speed of information propagation is considered important (e.g., Brown and Hayes, 

2008, Weiss, 2013). 

7.2 Contributions to Practitioners 

A marketing organization might maintain a database of customers and 

prospective customers that are segmented according to various characteristics, and 

target different marketing activities to different segments. The organization may choose 

to invest more resources in certain segments, cross-sell to some groups, up-sell to 

others, and focus on reducing the cost of serving others. In such situations, the company 
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is the main actor, addressing passive customers, whose ability to respond to the 

company's efforts is essentially captured in their purchasing behavior.  

With the rise of social networking on a vast scale, the customer is no longer 

limited to a passive role in his or her relationship with a company. In addition to having 

more information about competitive products, customers can easily express and 

distribute their opinions to large audiences. Companies are likely to find it increasingly 

difficult to manage the messages that customers receive about their products/services. 

These developments are potentially detrimental to companies. If customers spread 

negative messages about a company, they might seriously damage its reputation. 

However, the emergence of social media also offers companies opportunities to 

listen to and engage with their customers, and potentially to encourage them to 

become advocates for their products. The challenge for companies is to identify and 

take advantage of such opportunities, and to avoid the pitfalls they entail. The models 

and insights to be generated from this dissertation serve as a foundation for practicing 

marketing professionals, which allows them to understand the social mechanisms in the 

social networks they intend to target. This helps marketers make decisions regarding 

where to spend their resources, so that they can engage the right stakeholders and 

convert them into advocates. The study in this dissertation is also the first of its kind 

that has been undertaken to understand the impact of consumption and propagation of 

information within social networks, to the best of my knowledge. This will help 
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managers understand the communication patterns within the social network, allowing 

them to allocate and optimize their resources accordingly.   

7.3 Limitations 

This study has looked at the impact of change within a social network. 

Specifically, it has investigated how changes in network’s structural characteristics and 

network flows affect each other, as well as their impact on the phenomenon of 

influence. I identify the following limitations that pertain to this research: 

1. This study does not look at the causes of change within a social network’s 

structure or information flow. For example, how governance mechanisms, task 

complexities or emergent roles relate to formation of network structure, 

information flow or influence of an individual within a social network are not 

covered in this dissertation.   

2. Though social networks like Twitter and YouTube provide access to a wide 

variety of participants, their real identity cannot be confirmed. This makes it 

difficult to glean demographic information like age, sex, etc. 

These limitations can be overcome by follow-on research that transpires in 

different contexts. Further research (by others) will determine which of the lessons 

learned from this dissertation can be generalized to other kinds of networks (e.g., other 

social networks on Twitter, online social networks on other platforms, trading, e-
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commerce, etc…). Conclusions drawn from an aggregation of these studies could serve 

as the foundation of a more broadly-based theory of online social networks.  
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Appendix A: Case Reports 

A.1 Case 1--Music 

A.1.1 Case Overview 

Data for keyword “YouTube + music” was collected over a period of 91 days 

(31/12/2013 to 31/03/2014). As shown in table 10, overall 3,097,847 tweets were 

collected, out of which 713,824 were broadcast tweets and 2,384,023 were engaged 

tweets respectively. Out of 2,384,023 engaged tweets only 1,586,149 tweets formed the 

largest community. Similarly, 2,586,586 daily unique people tweeted overall, out of 

which 898,282 daily unique people were engaged in broadcast activity, whereas 

1,688,304 daily unique people were engaged in conversations. Out of 1,688,304 daily 

unique people only 1,456,770 daily unique people formed the largest community.  Data 

for the largest community was analyzed at a daily interval. The overall trends for the 

music data are shown below in figure 1 and figure 2. 

 

 

 

 

 

Figure 1: Overall Tweets 
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Figure 1 and figure 2 show that both the total tweets and total people involved 

are very dynamic, and their magnitude changes on a daily basis. The maximum of the 

total number of daily tweets and the maximum of the total number of daily unique 

people observed on a single day (the daily uniques) are 62,380 and 59,666, respectively. 

Similarly, the minimum of the total number of daily tweets and the minimum of the 

number daily unique are 19,700 and 18,333, respectively.  The size of the largest 

community on a particular day and the largest number of community tweets on that day 

also seem to follow the trend of total people and total tweets. The largest number of 

daily community tweets and the largest number of daily unique people are 48,720 and 

47,630, respectively.  Similarly, the smallest number of daily community tweets and the 

smallest number of daily unique people are 10,830 and 10,324, respectively. As the total 

number of daily unique people tweeting increases, so does the size of the community. 

Most of the engaged people are engaged in the collective conversation forming the 

largest community. 

Figure 2: Overall People 
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A.1.2 Random or Not Random 

As explained in section 4.4.1, in order to eliminate α-errors and β-errors, I 

compare the Clustering Coefficients of both undirected and directed networks with their 

corresponding random (Erdös-Rényi, E-R) networks. If the Clustering Coefficients of the 

undirected and directed (CC_ud, CC_d) music networks are equal to those of the E-R 

random network (CCudran, CCdran), then the directed and undirected networks are 

considered to be random, if they are not equal, then they are not random. 

 

 

 

 

 

Figure 4: Comparison of Clustering Coefficients of Directed Music Network with E-R 

Networks 

Figure 3: Comparison of Clustering Coefficients of Undirected Music Network with E-R 

Networks 
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As seen in figure 3 and figure 4 Clustering Coefficients of both, directed and 

undirected networks (CC_ud, CC_d) follow very different pattern from their 

corresponding E-R networks (CCudran, CCdran). Therefore, both these networks are 

considered to be non-random networks, and the variables computed are a true 

reflection of network’s features. 
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A.1.3 Independent Variables 

The values of the independent variables for both the undirected and the directed 

music network are shown in figure 5 below. 

 

 

 

Figure 5: Independent Variables--(a) Nodes and Edges (Undirected and Directed networks), (b) 

Reciprocity (Directed Networks), (c) Density (Undirected and Directed Networks), (d) Clustering 

Coefficient Undirected Network, (e) Clustering Coefficient Directed Network. 
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Figure 5 (a) shows that the number of directed ties (Edges_d) in the network and 

the total number of nodes (Nodes) overlap with each other. The numbers of undirected 

ties (Edges_ud) is greater than the number of directed ties (Edges_d), because in an 

undirected network every directed tie is considered to be symmetric. Therefore it is 

counted twice, except for the ones that are symmetric in a directed network. 

Reciprocity in figure 5 (b) indicates the presence of symmetric ties in a directed network 

(in an undirected network 100% are symmetric). The value of 0.01 is equal to 1% of all 

the ties. Figure 5(c) shows the difference between the densities of the undirected 

(Den_ud) and the directed (Den_d) music networks. The undirected network is denser 

than the directed network (Den_ud > Den_d). Figure 5 (d) and figure 5 (e) show that the 

directed networks have higher Clustering Coefficients than the undirected networks 

(CC_d > CC_ud). 
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A.1.4 Network Structure Variables (MV1) 

A.1.4.1 The Scale Free Metric 

 

 

 

Figure 6 shows the Scale Free Metric for the undirected, directed, consumption 

and propagation networks (S_ud, S_d, S_con, S_pro). The Scale Free Metrics for the 

undirected (S_ud) and the directed network (S_d) are similar, but the Scale Free Metrics 

for the consumption (S_con) and propagation (S_pro) networks are very different. The 

propagation network is more Scale Free than the consumption network (S_pro > S_con). 

The values of the Scale Free Metric ranges between 0 and 1. When the values are closer 

to 1, it means that the networks are more Scale Free. None of the networks are Scale 

Free in nature. This means that these networks have hubs in them. However, there is 

not just one hub that is the center of the community. 

Figure 6: Scale Free Metric--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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A.1.4.2 The Assortativity 

 

 

Figure 7 shows the Assortativity for the undirected, directed, consumption and 

propagation networks of music conversations (R_ud, R_d, R_con, R_Pro). The values of 

the Assortativity ranges between -1 and 1. When the values are closer to -1, it means 

that networks are Disassortative. The undirected network is more Disassortative than 

the directed network (R_d > R_ud). Among the directed networks, the consumption 

network is more Disassortative than the propagation network (R_pro > R_con). 

Disassortative means that the nodes in the network connect to nodes that are very 

similar to themselves. This is true more so in the undirected network and in the 

consumption network than it is in the directed network and the propagation network. 

This implies that disassortativeness of consumption contributes more to the 

disassortativeness of the directed network than the disassortativeness of the 

propagation does.  

Figure 7: Music Assortativity--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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A.1.4.3 The Small World Metric 

 

   

 

Figure 8 shows the Small World Metric for the undirected (SMSP_ud) and 

directed networks (SMSP_d). The Small World Metrics for the consumption and 

propagation networks are the same as the ones for the directed network. The directed 

networks show stronger Small World behavior than the undirected networks (SMSP_d > 

SMSP_ud). This means that in directed networks there are more nodes that act as hubs 

that facilitate communication between other nodes of the network. 

  

Figure 8: Small World Metric --(a) Undirected Network, (b) Directed Network.  
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A.1.4.4 Paths and Shortest Paths Power law Distribution per Node 

 

 

 

 

Figure 9 shows that, in the undirected network, paths are more uniformly 

distributed among nodes (PL_TpudN) than shortest paths are distributed among nodes 

(PL_TSpudN). This means that fewer nodes are responsible for more of the shortest 

paths in the undirected network. A similar, albeit less pronounced, trend for the 

consumption network is seen in figure 9 (c).  In the directed and propagation networks, 

there are no such patterns. 

  

Figure 9: Power Law Distribution of Paths and Shortest Paths in (a) Undirected Network, (b) 

Directed Network, (c) Consumption Network, (d) Propagation Network. 
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A.1.5 Network Flow Variables (MV2) 

 

 

 

Figure 10 (a), shows that Total Number of Paths in the undirected network 

(Tpaths_ud) is orders of magnitude higher than the Total Number of Shortest Paths 

(TSpaths_ud). The Total Number of Paths (Tpaths_d) and the Total Number of Shortest 

Paths (TSpaths_d) map more closely in the directed network. In figure 10 (b), a similar 

trend is observed in the Average Path Lengths and the Average Geodesic Lengths of the 

undirected and directed networks (AvgPL_ud, AvgPL_d, AvgGL_ud, AvgGL_d). In figure 

(a) 

(b) 

(c) 

Figure 10: Network Flow Variables-- (a) Total Paths and Total Shortest Paths, (b) 

Average Paths and Average Shortest Paths, (c) Undirected and Directed Network Graph 

Diameter. 
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10 (c), the Graph Diameter of the undirected network (GD_ud) is larger than the Graph 

Diameter of the directed network (GD_d). It is also noteworthy that, in figure 10 (b) and 

in figure 10 (c), the Graph Diameter and the Average Path Length of the undirected and 

directed networks (GD_ud, AvgPL_ud, GD_d, AvgPL_d) track pretty closely. 
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A.1.6 Dependent Variables  

A.1.6.1 Eigenvector Centralization 

 

 

 

Figure 11 shows that nodes with influence are lot more central in the undirected 

network than in the directed, consumption and propagation networks (ECud > (ECd, 

ECin, ECout)). The consumption and propagation networks exhibit same level of 

centralization. 

A.1.6.2 Power law Distribution of Eigenvector Centrality per Node 

 

 

 

Figure 11: Eigenvector Centralization in the Undirected, Directed, Consumption and Propagation 

Networks 

Figure 12: Power Law Distribution of Eigenvector Centrality in Undirected, Directed, 

Consumption and Propagation Network 
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Figure 12 shows that in undirected, directed, consumption and propagation 

network the distribution of Eigenvector Centrality amongst nodes have similar Power 

Law patterns. 

A.1.6.3 Correlation Coefficients of Eigenvector Centrality vs. Total Paths per Node 

and Eigenvector Centrality vs. Total Shortest Paths per Node 

 

 

 

 

Figure 13: Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and Eigenvector 

Centrality vs. Total Shortest Paths per Node--(a) Undirected Network, (b) Directed Network, (c) 

Consumption Network, (d) Propagation Network. 
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In figure 13, only those correlation coefficients with a significance value lower 

than 0.05 are shown. In figure 13 (a), there is a significant correlation between the 

Eigenvector Centrality of a node and the number of paths from a node in undirected 

network (EVCud_TpUDN). There is no significant correlation between Eigenvector 

Centrality of a node and shortest paths from a node in undirected network 

(EVCud_TSpUDN). Similarly, in figure 13 (c), there is a significant correlation between 

the in-Eigenvector Centrality of a node and the number of paths ending on a node in the 

consumption network (EVCin_TpinN). The correlation between the in-Eigenvector 

Centrality of a node and the number of shortest paths is less significant (EVCin_TSpinN). 

In figure 13(b) and figure 13 (d) the directed-Eigenvector Centrality and the out-

Eigenvector Centrality have no significant correlation with either the number of paths or 

the number of shortest paths. 
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A.1.7 Statistical Analysis 

A.1.7.1 The Undirected Network 

A.1.7.1.1 Correlation Analysis 

In Table 1, the statistically significant Correlation Coefficients for the undirected 

network are marked in yellow. All correlations between all variables are shown in 

supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_ud Den_ud CC_ud GD_ud Tpaths_ud

Pearson Correlation 1
Sig. (2-tailed)

N 91
Pearson Correlation .989** 1

Sig. (2-tailed) .000
N 91 91
Pearson Correlation -.888** -.870** 1

Sig. (2-tailed) .000 .000
N 91 91 91
Pearson Correlation .255* .245* -.246* -.003 .949** 1

Sig. (2-tailed) .015 .019 .019 .976 .000
N 91 91 91 91 91 91
Pearson Correlation .727** .767** -.739** .014 -.005 .112

Sig. (2-tailed) .000 .000 .000 .897 .964 .290
N 91 91 91 91 91 91
Pearson Correlation .022 .021 -.094 .066 .999** .955**

Sig. (2-tailed) .837 .843 .378 .537 .000 .000
N 91 91 91 91 91 91
Pearson Correlation -.612** -.569** .445** .419** -.055 -.269**

Sig. (2-tailed) .000 .000 .000 .000 .603 .010
N 91 91 91 91 91 91
Pearson Correlation -.221* -.134 .049 .542** .169 .048

Sig. (2-tailed) .035 .205 .644 .000 .109 .653
N 91 91 91 91 91 91
Pearson Correlation .147 .195 -.287** .912** .080 .041

Sig. (2-tailed) .165 .064 .006 .000 .449 .698
N 91 91 91 91 91 91

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

SMSP_ud

Tpaths_ud

TSpaths_ud

AvgPL_ud

S_ud

R_ud

Nodes

Edges_ud

Den_ud

Table 1: Correlation Coefficients of Undirected Network  
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In Table 1, the number of nodes (Nodes) and the number of ties (Edges_ud) have 

a strong positive correlation. As the number of nodes (Nodes) increases, the number of 

ties (Edges_ud) also increases. The Density (Den_ud) of this network has a strong 

negative correlation with both the number of nodes (Nodes) and the number of ties 

(Edges_ud). As the number of nodes (Nodes) or number of ties increases (Edges_ud), 

Density (Den_ud) decreases. This is because Density is a measure of the total number of 

ties that exists in the network vs. the number of all possible ties. As the number of 

nodes increases (Nodes), the total number of possible ties also increases, pushing down 

Density (Den_ud). The Total Number of Paths (Tpaths_ud) in the network, the Average 

Path Length (AvgPL_ud) and Graph Diameter (GD_ud) correlate strongly with each other 

in this network.  The Total Number of Shortest Paths (TSpaths_ud) correlates strongly 

with the number of nodes (Nodes) and the number of ties (Edges_ud), but it correlates 

negatively with Density (Den_ud). The possible number of shortest paths increases as 

the number of nodes (Nodes) and the number of ties (Edges_ud) increases.  Since 

Density (Den_ud) shares a negative relationship with the possible increase in the 

number of nodes (Nodes) and ties (Edges_ud) (explained above), it also shares a 

negative relationship with the Total Number of Shortest Paths (Tpaths_ud). The Scale 

Free (S_ud) metric seems to share a negative relationship with the number of nodes 

(Nodes) and the number of ties (Edges_ud).  Assortativity (R_ud) and the Small World 

(SMSP_ud) metric share a positive relationship with the Clustering Coefficients (CC_ud). 
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A.1.7.1.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”.  

A.1.7.1.2.1 Independent Variables 

 

 

 

The factor analysis generated two factors that explain 95% (greater than 80%) of 

the cumulative variance. Both factors have eigenvalues above one. Nodes and ties 

(Edges_ud) have significant factor loadings in factor 1. Density (Den_ud) had a negative 

loading in factor 1, hence it was removed. Only the Clustering Coefficient (CC_ud) has a 

significant loading in factor 2.Cronbach’s alpha for factor 1 has a value of 0.994. This 

means nodes and ties are measuring same construct within factor 1. Hence, I name 

factor 1 as “Size”.  

  

Figure 14: Factor Analysis Independent Variables Music Undirected Network  
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A.1.7.1.2.2 Network Structure (MV1) 

 

The factor analysis generated three factors that explain 81.189% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor 3 

has eigenvalues below 1. Scale Free Metric (S_ud), Assortativity (R_ud) and Small World 

Metric (SMSP_ud) have significant factor loadings in factor 1. Cronbach’s alpha for 

factor1 has a value of 0.286. Scale Free Metric (S_ud), Assortativity (R_ud) and Small 

World Metric (SMSP_ud) are measuring different constructs within factor 1. Hence, they 

should not be considered as a factor. Power Law Distribution of Total Paths per Node 

(PL_TpudN) and Small World Metric (SMSP_ud) have significant factor loadings in factor 

2. Cronbach’s alpha for facto1 has a value of 0.246. PL_TpudN and SMSP_ud are 

measuring different constructs within factor 2. Hence, they should not be considered as 

a factor. All other variables load independently.  

Figure 15: Factor Analysis of Network Structure Variables  
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A.1.7.1.2.3 Network Flow (MV2) 

 

 

Graph Diameter (GD_ud), Total Paths (Tpaths_ud) and Average Path Length 

(AvgPL_ud) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has 

a value of 0.989. Graph Diameter (GD_ud), Total Paths (Tpaths_ud) and Average Path 

Length (AvgPL_ud) are measuring the same construct within factor 1. Factor 1 is named 

as “Spread”, as the AvgPL_ud and Tpaths_ud are being used as proxies for information 

spread. 

Total Shortest Paths (TSpaths_ud) and Average Geodesic Length (AvgGL_ud) 

have significant factor loadings on factor 2. Cronbach’s alpha for factor 2 has a value of 

0.517, which indicates poor internal consistency. Therefore, Total Shortest Paths 

Figure 16: Factor Analysis of Network Flow Variables  
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(TSpaths_ud) and Average Geodesic Length (AvgGL_ud) maybe measuring different 

constructs in factor 2. Hence, they should not be considered as a factor.  But if they had 

better internal consistency, I would name factor 2 as “Speed”, since Total Shortest Paths 

(TSpaths_ud) and Average Geodesic Length (AvgGL_ud) are being used as proxies for 

information speed.  

A.1.7.1.2.4 Dependent Variables 

The value of Kaiser-Meyer-Olkin measure of sampling adequacy was 0.429 (less 

than 0.5), and the significance Bartlett’s test of sphericity is 0.346. This data does not 

satisfy the measure of appropriateness for factor analysis.  Therefore, all the variables 

are considered independently.  
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A.1.7.1.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Music.pdf”.  

A.1.7.1.3.1 Impact of Network Structure on Network Flow 

 

 

Table 2 shows that the network structure variables have a significant impact on 

the network flow variables. Network structure variables explain 9.3%, 25.4% and 28.7% 

variation in Total Paths (Tpaths_ud), Total Shortest Paths (TSpaths_ud) and Average 

Geodesic Length (AvgGL_ud), respectively. The impact of network structure variables on 

Tpaths_ud is not taken into consideration, as the p-value of 0.005 is greater than the 

Bonferroni-adjusted p-value of 0.000694.  

 

Table 2: Impact of Network Structure on Network Flow  
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A.1.7.1.3.2 Impact of Network Flow on Network Structure 

 

 

Table 3 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 4%, 3.2%, and 16.7% 

variation in the PL_TpudN, PL_TSpudN and R_ud, respectively. The impact of network 

flow variables on PL_TpudN and PL_TSpudN is not taken into consideration, as the p-

values are greater than the Bonferroni-adjusted p-value of 0.000694. 

 

 

 

 

 

 

 

 

Table 3: Impact of Network Flow on Network Structure 
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A.1.7.1.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 4 shows that the network structure variable impacts only Eigenvector 

Centralization (ECud), explaining only 7.9% variation. The impact of network structure 

variables on (ECud) is not taken into consideration, as the p-value is greater than the 

Bonferroni-adjusted p-value of 0.000694. 

 

 

 

  

Table 4: Impact of Network Structure on Network Phenomenon 

 



www.manaraa.com

250 
 

 

A.1.7.1.3.4 Impact of Network Flow on Network Phenomenon 

 

Table 5 shows that the network flow variable impacts Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) and 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN), explaining 

6.2%, 2.4% and 2.5% variation respectively. The impact of network flow variables on 

Eigenvector Centralization (EC_ud), Power Law Distribution of Eigenvector Centrality per 

Node (PL_EVCudN) and Eigenvector Centrality with respect to Total Paths per Node 

(EVCud_TpudN) is not taken into consideration, as their respective p-values are greater 

than the Bonferroni-adjusted p-value of 0.000694. 

 

 

Table 5: Impact of Network Flow on Network Phenomenon 
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A.1.7.1.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

Table 6 shows the collective impact of independent and moderating variables on 

the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_ud), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCudN) and Eigenvector Centrality with respect 

to Total Paths per Node (EVCud_TpudN), explaining 15.7%, 4.5% and 4.6% variation 

respectively. The collective impact of independent variables and the moderating 

variables on Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) 

and Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) is not 

taken into consideration, as their respective p-values are greater than the Bonferroni-

adjusted p-value of 0.000694. 

Table 6: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.1.7.2 The Directed Network 

A.1.7.2.1 Correlation Analysis 

Significant Correlations Coefficients for directed network are shown below in 

table 7. Significant correlations observed are marked in yellow. All correlations between 

all variables are shown in supplemental file titled “Correlations.pdf”. 

 

Nodes Edges_d Reciprocity CC_d GD_d Tpaths_d TSpaths_d AvgPL_d EVCd_TpD

Pearson Correlation 1

Sig. (2-tailed)

N 91

Pearson Correlation.988
** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.888
**

-.870
** -.075

Sig. (2-tailed) .000 .000 .478

N 91 91 91

Pearson Correlation.461
**

.508
**

.605
** -.112 .764

** 1

Sig. (2-tailed) .000 .000 .000 .292 .000

N 91 91 91 91 91 91

Pearson Correlation.466
**

.488
**

.415
**

-.294
**

.515
**

.752
** 1

Sig. (2-tailed) .000 .000 .000 .005 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.378
**

.438
**

.352
** -.018 .960

**
.847

**
.591

** 1

Sig. (2-tailed) .000 .000 .001 .865 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.159 .223
*

.305
** -.088 .683

**
.560

**
.626

**
.686

**

Sig. (2-tailed) .132 .034 .003 .406 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation-.612
**

-.569
** -.022 .044 .020 -.205 -.211

* -.013

Sig. (2-tailed) .000 .000 .839 .675 .854 .051 .045 .906

N 91 91 91 91 91 91 91 91

Pearson Correlation-.098 -.107 -.018 .945
** -.113 -.142 -.339

** -.073

Sig. (2-tailed) .354 .313 .862 .000 .286 .181 .001 .489

N 91 91 91 91 91 91 91 91

Pearson Correlation.049 .054 .042 -.159 -.070 .111 .237
* -.061 .717

**

Sig. (2-tailed) .643 .612 .695 .131 .511 .293 .024 .568 .000

N 91 91 91 91 91 91 91 91 91

EVCd_TSpD

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_d

SMSP_d

Tpaths_d

TSpaths_d

AvgPL_d

AvgGL_d

Correlations

Nodes

Edges_d

Den_d

Table 7: Correlation coefficients of directed network  

 



www.manaraa.com

253 
 

 

Table 7 shows that nodes (Nodes) and ties (Edges_d) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Shortest Paths (TSpaths_d) correlates strongly with Graph Diameter 

(GD_d) and Total Paths (Tpaths_d). Average Path Length (AvgPL_d) and Average 

Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Scale Free Metric 

(S_d) seems to share a negative relationship with number of nodes (Nodes) and number 

of ties (Edges_d).  Small World Metric (SMSP_d) is strongly correlated with Clustering 

Coefficient (CC_d). Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCd_TSpdN) and Eigenvector Centrality with respect to Total Paths per Node 

(EVCd_TpdN) correlate strongly with each other. 
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A.1.7.2.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.1.7.2.2.1 Independent Variables 

 

 

Factor analysis generated three factors that explain 96.65% (greater than 80%) 

of cumulative variance. Factor 1 has eigenvalue over 1. Factor2 and factor3 have 

eigenvalues little less than 1. Nodes and ties (Edges_d) have significant factor loadings in 

factor 1. Density (Den_d) had negative loading of -0.941 in factor 1, hence it was 

removed. Only Clustering Coefficient (CC_d) and Reciprocity have significant loadings in 

factor 2 and factor 3.Cronbach’s alpha for factor 1 has a value of 0.994. This means 

Nodes and ties (Edges_d) are measuring same construct within factor 1. Hence, I name 

factor 1 as “Size”. 

Figure 17: Factor Analysis of Independent Variables  
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A.1.7.2.2.2 Network Structure (MV1) 

 

 

Factor analysis generated four factors that explain 89.64% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor 2 and factor 

3 have eigenvalues below 1. Assortativity (R_d) and Small World Metric (SMSP_d) have 

significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.167. 

Assortativity (R_d) and Small World Metric (SMSP_d) are measuring different constructs 

within factor 1. Hence, they should not be considered as a factor. All other variables 

load independently. 

 

 

Figure 18: Factor Analysis of Network Structure Variables  
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A.1.7.2.2.3 Network Flow (MV2) 

 

 

Factor analysis generated two factors that explain 87.936% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Average Path 

Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.92. Factor 1 is named 

as “Spread” as Total Paths (Tpaths_d), Average Path Length (AvgPL_d) are being used as 

proxies for information spread. 

Total Paths (Tpaths_d), Total Shortest Paths (TSpaths_d) and Average Geodesic 

Length (AvgGL_d) have significant factor loadings on factor2. Cronbach’s alpha for 

factor2 has a value of 0.73. Factor 2 is named as “Speed” since Total Shortest Paths 

Figure 19: Factor Analysis of Network Flow Variables  
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(TSpaths_d) and Average Geodesic Length (AvgGL_d) are being used as proxies for 

information speed. 

A.1.7.2.2.4 Dependent Variables 

 

The value of Kaiser-Meyer-Olkin measure of sampling adequacy was 0.474(less 

than 0.5) but the significance Bartlett’s test of sphericity is 0. Factor analysis generated 

three factors that explain 93.702% (greater than 80%) of cumulative variance. 

Eigenvector Centralities with respect to Paths (EVCd_TpD) and Shortest Paths 

(EVCd_TSpD) have significant factor loading on factor 1. Factor 1 has a Cronbach’s alpha 

of 0.779. I name factor 1 as “Influence”. 

Figure 20: Factor Analysis of Dependent Variables  
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A.1.7.2.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Music.pdf”.  

A.1.7.2.3.1 Impact of Network Structure on Network Flow 

 

 

Table 8 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 12.7%, 5.2%, 22.7%, 15.6% 

and 7.9% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on Total Shortest 

Paths (TSpaths_d), and Average Geodesic Length (AvgGL_ud) are not taken into 

consideration, as the p-value is greater than the Bonferroni-adjusted p-value of 

0.000694. 

Table 8:  Impact of Network Structure on Network Flow  
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A.1.7.2.3.2 Impact of Network Flow on Network Structure 

 

 

Table 9 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 10.3%, 16.3%, 14.2%, 22.6% 

and 9.0% variation in the PL_TpdN, PL_TSpdN, S_d, R_ud, and SMSP_d, respectively. The 

impact of network flow variables on PL_TpdN and SMSP_d are not taken into 

consideration, as the p-values are greater than the Bonferroni-adjusted p-value of 

0.000694. 

 

 

 

 

Table 9: Impact of Network Flow on Network Structure 
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A.1.7.2.3.3 Impact of Network Structure on Network Phenomenon 

 

Table 10 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN) and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCd_TSpdN), explaining 4%, 14% and 6.1% variation respectively. The impact of 

network flow variables Eigenvector Centralization (EC_d), Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCdN) and Eigenvector Centrality with respect to 

Total Shortest Paths per Node (EVCd_TSpdN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 10: Impact of Network Structure on Network Phenomenon 
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A.1.7.2.3.4 Impact of Network Flow on Network Phenomenon 

 

 

Table 11 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN) and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCud_TSpdN), explaining 9%, 5.1% and 9.8% variation respectively. The impact of 

network flow variables Eigenvector Centralization (EC_d), Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCdN) and Eigenvector Centrality with respect to 

Total Shortest Paths per Node (EVCud_TSpdN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 11: Impact of Network Flow on Network Phenomenon 
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A.1.7.2.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

Table 12 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_d), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 9%, 30.3%, 6%and 6.1% variation 

respectively. The collective impact of independent variables and the moderating 

variables on (EC_d), Eigenvector Centrality with respect to Total Paths per Node 

(EVCd_TpdN) and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCud_TSpudN) are not taken into consideration, as their respective p-values are 

greater than the Bonferroni-adjusted p-value of 0.000694.  

Table 12: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.1.7.3 The Consumption Network 

A.1.7.3.1 Correlation Analysis 

Significant correlations coefficients for consumption network are shown below in 

table 13. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”.

 

 

Nodes Edges_d Reciprocity Den_d CC_d GD_d Tpaths_d TSpaths_d AvgPL_d

Pearson Correlation.988
** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.888
**

-.870
** -.075 1

Sig. (2-tailed) .000 .000 .478

N 91 91 91 91

Pearson Correlation.461
**

.508
**

.605
**

-.489
** -.112 .764

** 1

Sig. (2-tailed) .000 .000 .000 .000 .292 .000

N 91 91 91 91 91 91 91

Pearson Correlation.466
**

.488
**

.415
**

-.474
**

-.294
**

.515
**

.752
** 1

Sig. (2-tailed) .000 .000 .000 .000 .005 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.378
**

.438
**

.352
**

-.434
** -.018 .960

**
.847

**
.591

** 1

Sig. (2-tailed) .000 .000 .001 .000 .865 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.159 .223
*

.305
** -.180 -.088 .683

**
.560

**
.626

**
.686

**

Sig. (2-tailed) .132 .034 .003 .087 .406 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.734
**

.699
** .075 -.467

** -.128 .132 .286
**

.401
** .169

Sig. (2-tailed) .000 .000 .478 .000 .227 .212 .006 .000 .110

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.804
**

.828
** .124 -.809

** -.145 .413
**

.517
**

.518
**

.482
**

Sig. (2-tailed) .000 .000 .242 .000 .171 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.098 -.107 -.018 .065 .945
** -.113 -.142 -.339

** -.073

Sig. (2-tailed) .354 .313 .862 .544 .000 .286 .181 .001 .489

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.273
**

-.241
*

-.387
**

.340
** .051 -.354

**
-.527

**
-.459

**
-.491

**

Sig. (2-tailed) .009 .021 .000 .001 .632 .001 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_con

R_con

SMSP_d

PL_TpinN

Tpaths_d

TSpaths_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

Table 13: Correlation coefficients of directed network  
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Tables 13 show that nodes (Nodes) and ties (Edges_ud) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Shortest Paths (TSpaths_d) correlates strongly with Graph Diameter 

(GD_d) and Total Paths (Tpaths_d). Average Path Length (AvgPL_d) and Average 

Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Scale Free Metric 

(S_con) and Assortativity (R_con) seems to share a positive relationship with number 

nodes (Nodes) and ties (Edges_ud).  Assortativity (R_con) correlates with Total Paths 

(Tpaths_d) and Total Shortest Paths (TSpaths_d) but has a negative correlation with 

Density (Den_d). Small World Metric (SMSP_d) is strongly correlated with Clustering 

Coefficient (CC_d). Power Law Distribution of Paths per Node (PL_TpinN) correlates 

negatively with Total Paths (Tpaths_d). 
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A.1.7.3.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.1.7.3.2.1 Independent Variables 

 

 

Factor analysis generated three factors that explain 96.65% (greater than 80%) 

of cumulative variance. Factor 1 has eigenvalue over 1. Factor2 and factor3 have 

eigenvalues little less than 1. Nodes and ties (Edges_d) have significant factor loadings in 

factor 1. Density (Den_d) had negative loading of -0.941 in factor 1, hence it was 

removed. Only Clustering Coefficient (CC_d) and Reciprocity have significant loadings in 

factor 2 and factor 3.Cronbach’s alpha for factor 1 has a value of 0.994. This means 

Figure 21: Factor Analysis of Independent Variables  
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nodes and ties (Edges_d) are measuring same construct within factor 1. Hence, I name 

factor 1 as “Size”. 

A.1.7.3.2.2 Network Structure (MV1) 

 

 

Factor analysis generated four factors that explain 90.76% (greater than 80%) of 

cumulative variance. Factor 1 and factor 2 have eigenvalues above 1. Factor 3 and factor 

4 have eigenvalues below 1. Assortativity (R_con) and Small World Metric (SMSP_d) 

have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 

0.088. Assortativity (R_con) and Small World Metric (SMSP_d) are measuring different 

constructs within factor 1. Hence, they should not be considered as a factor. All other 

variables load independently. 

Figure 22: Factor Analysis of Network Structure Variables  
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A.1.7.3.2.3 Network Flow (MV2) 

 

 

Factor analysis generated two factors that explain 87.936% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Average Path 

Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.92. Factor 1 is named 

as “Spread” as Total Paths (Tpaths_d), Average Path Length (AvgPL_d) are being used as 

proxies for information spread. 

Total Paths (Tpaths_d), Total Shortest Paths (Tpaths_d) and Average Geodesic 

Length (AvgGL_d) have significant factor loadings on factor2. Cronbach’s alpha for 

factor2 has a value of 0.73. Factor 2 is named as “Speed” since Total Shortest Paths 

(Tpaths_d) and Average Geodesic Length (AvgGL_d) are being used as proxies for 

information speed. 

Figure 23: Factor Analysis of Network Flow Variables  
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A.1.7.3.2.4 Dependent Variables 

 

 

The value of Kaiser-Meyer-Olkin measure of sampling adequacy was 0.467(less 

than 0.5) but the significance Bartlett’s test of sphericity is 0.002. Factor analysis 

generated three factors that explain 93.702% (greater than 80%) of cumulative variance. 

Eigenvector Centralities with respect to Paths (EVCin_TpinN) and Shortest Paths 

(EVCin_TSpinN) have significant factor loading on factor 1. Factor 1 has a Cronbach’s 

alpha of 0.397. Eigenvector Centrality with respect to both, Paths (EVCin_TpinN) and 

Shortest Paths (EVCin_TSpinN), seem to measuring different constructs within factor 1. 

Hence, they should not be considered as a factor. All other variables load 

independently. 

 

Figure 24: Factor Analysis of Dependent Variables  
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A.1.7.3.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Music.pdf”.  

A.1.7.3.3.1 Impact of Network Structure on Network Flow 

 

 

Table 14 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 20.4%, 41.1%, 59.5%, 40.7% 

and 7.6% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on AvgGL_ud is not 

taken into consideration, as the p-value is greater than the Bonferroni-adjusted p-value 

of 0.000694. 

Table 14:  Impact of Network Structure on Network Flow  
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A.1.7.3.3.2 Impact of Network Flow on Network Structure 

 

 

Table 15 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 27%, 26.5%, 36%, 30% and 

8.7% variation in the PL_TpinN, PL_TSpinN, S_con, R_con, and SMSP_d, respectively. 

The impact of network flow variables on SMSP_d is not taken into consideration, as the 

p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

 

 

 

 

Table 15: Impact of Network Flow on Network Structure 
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A.1.7.3.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 16 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in), Eigenvector Centrality with respect to Total Paths per Node 

(EVCin_TpinN), explaining 8.5% and 23.4% variation respectively. The impact of network 

flow variables on Eigenvector Centralization (EC_in), Eigenvector Centrality with respect 

to Total Paths per Node (EVCin_TpinN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 16: Impact of Network Structure on Network Phenomenon 
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A.1.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

Table 17 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in), Eigenvector Centrality with respect to Total Paths per Node 

(EVCin_TpinN) and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCin_TSpinN), explaining 3.4%, 27.4% and 10.1% variation respectively. The impact of 

network flow variables on EC_in and EVCin_TSpinN are not taken into consideration, as 

their respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 17: Impact of Network Flow on Network Phenomenon 
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A.1.7.3.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 18 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_in), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCinN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCin_TSpinN), explaining 19.9%, 6.4%, 27.4%and 14.4% 

variation respectively. The collective impact of independent variables and the 

moderating variables on Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCinN) is not taken into consideration, as their respective p-values are greater 

than the Bonferroni-adjusted p-value of 0.000694. 

Table 18: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.1.7.4 The Propagation Network 

A.1.7.4.1 Correlation Analysis 

Significant correlations coefficients for propagation network are shown below in 

table 19. All correlations between all variables are shown in supplemental file titled 

“Correlations.pdf”.

 

Table 19 shows that nodes and ties have a strong positive correlation. As the 

number of nodes (Nodes) increase, the number of ties (Edges_d) also increases. Density 

Nodes Edges_d Reciprocity Den_d CC_d GD_d Tpaths_d TSpaths_d AvgPL_d EVCout_TpoutN

Pearson Correlation.988
** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.888
**

-.870
** -.075 1

Sig. (2-tailed) .000 .000 .478

N 91 91 91 91

Pearson Correlation.461
**

.508
**

.605
**

-.489
** -.112 .764

** 1

Sig. (2-tailed) .000 .000 .000 .000 .292 .000

N 91 91 91 91 91 91 91

Pearson Correlation.466
**

.488
**

.415
**

-.474
**

-.294
**

.515
**

.752
** 1

Sig. (2-tailed) .000 .000 .000 .000 .005 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.378
**

.438
**

.352
**

-.434
** -.018 .960

**
.847

**
.591

** 1

Sig. (2-tailed) .000 .000 .001 .000 .865 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.159 .223
*

.305
** -.180 -.088 .683

**
.560

**
.626

**
.686

**

Sig. (2-tailed) .132 .034 .003 .087 .406 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.734
**

-.700
** .050 .522

** .098 -.039 -.200 -.273
** -.088

Sig. (2-tailed) .000 .000 .640 .000 .356 .715 .057 .009 .406

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.098 -.107 -.018 .065 .945
** -.113 -.142 -.339

** -.073

Sig. (2-tailed) .354 .313 .862 .544 .000 .286 .181 .001 .489

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.351
**

.360
** .028 -.319

** -.079 .159 .196 .189 .181 .749
**

Sig. (2-tailed) .001 .000 .795 .002 .456 .131 .063 .073 .086 .000

N 91 91 91 91 91 91 91 91 91 91

EVCout_TSpoutN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

R_pro

SMSP_d

Tpaths_d

TSpaths_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

Table 19: Correlation coefficients of directed network  
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(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Shortest Paths (TSpaths_d) correlates strongly with Graph Diameter 

(GD_d) and Total Paths (Tpaths_d). Average Path Length (AvgPL_d) and Average 

Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Assortativity (R_pro) 

correlates negatively with Nodes and ties (Edges_d) but has a positive correlation with 

Density Den_d). Small World Metric (SMSP_d) is strongly correlated with Clustering 

Coefficient (CC_d). Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCout_TSpoutN) and Eigenvector Centrality with respect to Total Paths per Node 

(EVCout_TpoutN)   correlate strongly with each other. 
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A.1.7.4.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.1.7.4.2.1 Independent Variables 

 

 

Factor analysis generated three factors that explain 96.65% (greater than 80%) 

of cumulative variance. Factor 1 has eigenvalue over 1. Factor2 and factor3 have 

eigenvalues little less than 1. Nodes and ties (Edges_d) have significant factor loadings in 

factor 1. Density (Den_d) had negative loading in factor 1, hence it was removed. Only 

Clustering Coefficient (CC_d) and Reciprocity have significant loadings in factor 2 and 

factor 3.Cronbach’s alpha for factor 1 has a value of 0.994. This means nodes and ties 

(Edges_d) are measuring same construct within factor 1. Hence, I name factor 1 as 

“Size”. 

Figure 25: Factor Analysis of Independent Variables  
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A.1.7.4.2.2 Network Structure (MV1) 

 

 

Factor analysis generated four factors that explain 87.16% (greater than 80%) of 

cumulative variance. Factor1, factor2 and factor3 have eigenvalues above 1. Factor 4 

has Eigenvalues below 1. Assortativity (R_pro), Power Law Distribution of Paths per 

Node (PL_TpoutN) and Power Law Distribution of Shortest Paths per Node (PL_TSpoutN) 

have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 

0.376. Assortativity (R_pro), Power Law Distribution of Paths per Node (PL_TpoutN) and 

Power Law Distribution of Shortest Paths per Node (PL_TSpoutN) are measuring 

different constructs within factor 1. Hence, they should not be considered as a factor. 

All other variables load independently. 

Figure 26: Factor Analysis of Network Structure Variables  
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A.1.7.4.2.3 Network Flow (MV2) 

 

 

Factor analysis generated two factors that explain 87.936% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Average Path 

Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.92. Factor 1 is named 

as “Spread” as average path length and total paths are being used as proxies for 

information spread. 

Total Paths (Tpaths_d), Total Shortest Paths (TSpaths_d) and Average Geodesic 

Length (AvgGL_d) have significant factor loadings on factor2. Cronbach’s alpha for 

factor2 has a value of 0.73. Factor 2 is named as “Speed” since total shortest paths and 

average geodesic length are being used as proxies for information speed. 

Figure 27: Factor Analysis of Network Flow Variables  
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A.1.7.4.2.4 Dependent Variables 

 

 

Factor analysis generated three factors that explain 93.81% (greater than 80%) 

of cumulative variance. Eigenvector Centralities with respect to Paths (EVCout_TpoutN) 

and Shortest Paths (EVCout_TSpoutN) have significant factor loading on factor 1. Factor 

1 has a Cronbach’s alpha of 0.779. I name factor 1 as “Influence” as both, Eigenvector 

centralities with respect to paths and shortest paths, are being used measure of 

influence. 

 

 

Figure 28: Factor Analysis of Dependent Variables  
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A.1.7.4.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Music.pdf”.  

A.1.7.4.3.1 Impact of Network Structure on Network Flow 

 

 

Table 20 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 23.4%, 3.4%, 3.5%, 

24% and 41.6% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic 

Length (AvgGL_ud), respectively. The impact of network structure variables on Total 

Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d) are not taken into 

consideration, as the p-value is greater than the Bonferroni-adjusted p-value of 

0.000694. 

 

Table 20:  Impact of Network Structure on Network Flow  
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A.1.7.4.3.2 Impact of Network Flow on Network Structure 

 

 

Table 21 shows that the network flow variables have a significant impact on 

the network structure variables. Network flow variables explain 5%, 5.8%, 39.2%, 

and 38.6% variation in the PL_TpoutN, PL_TSpoutN, S_pro, and R_pro, respectively. 

The impact of network flow variables on PL_TpoutN, PL_TSpoutN are not taken into 

consideration, as the p-values are greater than the Bonferroni-adjusted p-value of 

0.000694. 

 

 

 

 

 

Table 21: Impact of Network Flow on Network Structure 
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A.1.7.4.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 22 shows that the network structure variable impacts Powel Law 

Distribution of Eigenvector Centrality with respect to Nodes (PL_EVCoutN), 

Eigenvector Centrality with respect to Total Paths per Node (EVCout_TpoutN) and 

Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCout_TSpoutN), explaining 3.5%, 7.6% and 8% variation respectively. The 

impact of network flow variables on Powel Law Distribution of Eigenvector 

Centrality with respect to Nodes (PL_EVCoutN), Eigenvector Centrality with respect 

to Total Paths per Node (EVCout_TpoutN) and Eigenvector Centrality with respect 

to Total Shortest Paths per Node (EVCout_TSpoutN) are not taken into 

consideration, as their respective p-values are greater than the Bonferroni-adjusted 

p-value of 0.000694. 

  

Table 22: Impact of Network Structure on Network Phenomenon 

 



www.manaraa.com

283 
 

 

A.1.7.4.3.4 Impact of Network Flow on Network Phenomenon 

 

 

Table 23 shows that the network structure variable impacts Eigenvector 

Centralization (ECout), Powel Law Distribution of Eigenvector Centrality with 

respect to Nodes (PL_EVCoutN), Eigenvector Centrality with respect to Total Paths 

per Node (EVCout_TpoutN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCout_TSpoutN), explaining 6.4%, 14.2%, 5.8% and 

11.9% variation respectively. The impact of network flow variables on EC_out, 

EVCout_TpoutN and EVCout_TSpoutN are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 23: Impact of Network Flow on Network Phenomenon 
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A.1.7.4.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 24 shows the collective impact of independent and moderating 

variables on the network phenomenon variables. The independent variables and the 

moderating variables collectively impact Eigenvector Centralization (EC_out), 

Power Law Distribution of Eigenvector Centrality per Node (PL_EVCoutN), 

Eigenvector Centrality with respect to Total Paths per Node (EVCout_TpoutN) and 

Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCout_TSpoutN), explaining 32.8%, 48.7%, 31.6%and 35.8% variation 

respectively.  

 

Table 24: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.2 Case 2--Entertainment 

A.2.1 Case Overview 

Data for keyword “YouTube + Entertainment” was collected over a period of 91 

days (31/12/2013 to 31/03/2014). As shown in table 9, overall 44,984 tweets were 

collected, out of which 10,762 were broadcast tweets and 34,222 were engaged tweets 

respectively. Out of 34,222 engaged tweets only 16,356 tweets formed the largest 

community. Similarly, 45,236 daily unique people tweeted overall, out of which 16,670 

daily unique people were engaged in broadcast activity whereas 28,566 daily unique 

people were engaged in conversations. Out of 28,566 daily unique people only 15,822 

daily unique people formed the largest community.  Data for the largest community was 

analyzed at a daily interval. The overall trends for the entertainment data are shown 

below in figure 1 and figure 2.  

 

 

 

 

 

Figure 1: Overall Tweets 
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Figure 1 and figure 2 shows that both the total tweets and total people involved 

are very dynamic and their magnitude changes on a daily basis. The maximum of the 

total number of daily tweets and the maximum of the total number of daily unique 

people observed on a single day (the daily uniques) are 1,771 and 2,263 respectively. 

Similarly, the minimum of the total number daily tweets and the minimum of the 

number daily unique are 207 and 243, respectively.  The size of the largest community 

on a particular day and the largest number of community tweets on that day also seem 

to follow the trend of total people and total tweets. The largest number of daily 

community tweets and the largest number of daily unique people are 1,113 and 1,812, 

respectively.   Similarly, the smallest number of daily community tweets and the 

smallest number of daily unique people are 35 and 35, respectively. As the total number 

of daily unique people tweeting increases, so does the size of the community. Most of 

the engaged people are engaged in the collective conversation forming the largest 

community. 

Figure 2: Overall People 
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A.2.2 Random or Not Random 

As explained in section 4.4.1, in order to eliminate α- error and β- error, I 

compare the Clustering Coefficients of both undirected and directed networks with their 

corresponding random (Erdös-Rényi, E-R) networks. If the Clustering Coefficients of the 

undirected and directed (CC_ud, CC_d) entertainment networks are equal to those of 

the E-R random network (CCudran, CCdran), then the directed and undirected networks 

are considered to be random, if they are not equal, then they are not random.  

 

 

 

 

 

As seen in figure 3 and figure 4 Clustering Coefficients of both, directed and 

undirected networks (CC_ud, CC_d) follow very different pattern from their 

Figure 3: Comparison of Clustering Coefficients of Undirected Network with E-R Networks 

Figure 4: Comparison of Clustering Coefficients of Directed Network with E-R Networks 
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corresponding E-R networks (CCudran, CCdran). Therefore, both these networks are 

considered to be non-random networks, and the variables computed are a true 

reflection of network’s features. 

A.2.3. Independent Variables 

The values of the independent variables for both the undirected and the directed 

entertainment network are shown in figure 5 below. 

 

 

Figure 5: Independent Variables--(a) Nodes and Edges (Undirected and Directed networks), (b) 

Reciprocity (Directed Networks), (c) Density (Undirected and Directed Networks), (d) Clustering 

Coefficient Undirected Network, (e) Clustering Coefficient Directed Network. 
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Figure 5 (a) shows that the number of directed ties (Edges_d) in the network and 

the total number of nodes (Nodes) overlap with each other. The numbers of undirected 

ties (Edges_ud) is greater than the number of directed ties (Edges_d), because in an 

undirected network every directed tie is considered to be symmetric. Therefore it is 

counted twice, except for the ones that are symmetric in a directed network. 

Reciprocity in figure 5 (b) indicates the presence of symmetric ties in a directed network 

(in an undirected network 100% are symmetric). The value of 0.01 is equal to 1% of all 

the ties. Figure 5(c) shows the difference between the densities of the undirected 

(Den_ud) and the directed (Den_d) networks. The undirected network is denser than 

the directed network (Den_ud > Den_d). Figure 5 (d) and figure 5 (e) show that the 

directed networks have higher Clustering Coefficients than the undirected networks 

(CC_d > CC_ud). 
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A.2.4 Network Structure Variables (MV1) 

A.2.4.1 The Scale Free Metric     

 

 

Figure 6 shows the Scale Free Metric for the undirected, directed, consumption 

and propagation networks (S_ud, S_d, S_con, S_pro). The Scale Free Metrics for the 

undirected (S_ud) and the directed network (S_d) are similar, but the Scale Free Metrics 

for the consumption (S_con) and propagation (S_pro) networks are very different. The 

propagation network is more Scale Free than the consumption network (S_pro > S_con). 

The values of the Scale Free Metric ranges between 0 and 1. When the values are closer 

to 1, it means that the networks are more Scale Free. None of the networks are Scale 

Free in nature. This means that these networks have hubs in them. However, there is 

not just one hub that is the center of the community. 

Figure 6: Scale Free Metric--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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A.2.4.2 The Assortativity  

 

 

 

Figure 7 shows the assortativity metric for the undirected, directed, 

consumption and propagation networks (R_ud, R_d, R_con, R_Pro). The value of the 

assortativity metric ranges between -1 and 1. When the values are closer to -1, it means 

that networks are disassortative. The undirected network is more Disassortative than 

the directed network (R_d > R_ud). Among the directed networks, the consumption 

network is more Disassortative than the propagation network (R_pro > R_con). 

Disassortative means that the nodes in the network connect to nodes that are very 

similar to themselves. This is true more so in the undirected network and in the 

consumption network than it is in the directed network and the propagation network. 

Figure 7: Assortativity--(a) Undirected Network, (b) Directed Network, (c) Consumption Network, 

(d) Propagation Network. 
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This implies that disassortativeness of consumption contributes more to the 

disassortativeness of the directed network than the disassortativeness of the 

propagation does.  

A.2.4.3 The Small World Metric 

 

 

 

Figure 8 shows the Small World Metric for the undirected (SMSP_ud) and 

directed networks (SMSP_d). The Small World Metrics for the consumption and 

propagation networks are the same as the ones for the directed network. The directed 

networks don’t show any small world behavior. Contrary to the directed networks, 

undirected networks show some small world behavior but not significantly enough. This 

means that in undirected networks there are more nodes that act as hubs that facilitate 

communication between other nodes of the network. 

  

Figure 8: Small World Metric -- (a) Undirected Network, (b) Directed Network.  
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A.2.4.4 Paths and Shortest Paths Power law Distribution per Node 

 

 

 

 

Figure 9 (a) shows that, in the undirected network, paths are more uniformly 

distributed among nodes than shortest paths are distributed among nodes. This means 

that fewer nodes are responsible for more of the shortest paths in the undirected 

network. There are fewer instances of shortest path following power law distribution in 

undirected (figure 9 (a)) and consumption (figure 9 (c)) networks. In the directed (figure 

9 (b)) and propagation (figure 9 (d)) networks, there are no such patterns. 

 

 

Figure 9: Power Law Distribution of Paths and Shortest Paths in (a) Undirected Network, (b) 

Directed Network, (c) Consumption Network, (d) Propagation Network. 
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A.2.5 Network Flow Variables (MV2) 

 

 

 

 

Figure 10 (a), shows that Total Number of Paths in the undirected network 

(Tpaths_ud) is orders of magnitude higher than the Total Number of Shortest Paths 

(TSpaths_ud). The Total Number of Paths (Tpaths_d) and the Total Number of Shortest 

Paths (TSpaths_d) map more closely in the directed network. In figure 10 (b), a similar 

trend is observed in the Average Path Lengths and the Average Geodesic Lengths of the 

undirected and directed networks (AvgPL_ud, AvgPL_d, AvgGL_ud, AvgGL_d). In figure 

Figure 10: Network Flow Variables-- (a) Total Paths and Total Shortest Paths, (b) 

Average Paths and Average Shortest Paths, (c) Undirected and Directed Network Graph 

Diameter. 
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10 (c), the Graph Diameter of the undirected network (GD_ud) is larger than the Graph 

Diameter of the directed network (GD_d). It is also noteworthy that, in figure 10 (b) and 

in figure 10 (c), the Graph Diameter and the Average Path Length of the undirected and 

directed networks (GD_ud, AvgPL_ud, GD_d, AvgPL_d) track pretty closely. 
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A.2.6 Dependent Variables  

A.2.6.1 Eigenvector Centralization 

 

 

 

Figure 11 shows that nodes with influence are lot more central in the undirected 

network than in the directed, consumption and propagation networks (ECud > (ECd, 

ECin, ECout)). The consumption and propagation networks exhibit same level of 

centralization. 

A.2.6.2 Power law Distribution of Eigenvector Centrality per Node 

 

 

 

Figure 11: Eigenvector Centralization in the Undirected, Directed, Consumption and 

Propagation Networks 

Figure 12: Power Law Distribution of Eigenvector Centrality in Undirected, Directed, 

Consumption and Propagation Network 
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Figure 12 shows that in undirected, directed, consumption and propagation 

network the distribution of Eigenvector Centrality amongst nodes have similar Power 

Law patterns. 

A.2.6.3 Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node 

 

 

 

 

 

Figure 13: Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and Eigenvector 

Centrality vs. Total Shortest Paths per Node--(a) Undirected Network, (b) Directed Network, (c) 

Consumption Network, (d) Propagation Network. 
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In figure 13, only those correlation coefficients with a significance value lower 

than 0.05 are shown. In figure 13 (a), there is a significant correlation between the 

eigenvector centrality of a node and the number of paths from a node in undirected 

network (EVCud_TpUDN). There is no significant correlation between eigenvector 

centrality of a node and shortest paths from a node in undirected network 

(EVCud_TSpUDN). In figure 13 (b), there is a significant correlation between the 

directed-eigenvector centrality of a node and the number of paths and shortest paths 

ending on a node in the directed network (EVCd_TpDN, EVCud_TSpUDN). In figure 13 

(c), there is a significant correlation between the in-eigenvector centrality of a node and 

the number of paths and shortest paths ending on a node in the consumption network 

(EVin_TpinN, EVCin_TSpinN). The correlation between the out-eigenvector centrality of 

a node and the number of shortest paths is less significant figure 13 (d) 

(EVCout_TpoutN, EVCout_TSpoutN). 
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A.2.7 Statistical Analysis 

A.2.7.1 The Undirected Network 

A.2.7.1.1 Correlation Analysis 

In Table 1, the statistically significant Correlation Coefficients for the undirected 

network are marked in yellow. All correlations between all variables are shown in 

supplemental file titled “Correlations.pdf”. 

 

 

Nodes

Edges_u

d Den_ud CC_ud GD_ud

Tpaths_

ud

TSpaths

_ud

AvgPL_u

d

AvgGL_u

d

PL_Tpud

N

PL_TSp

udN S_ud R_ud

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.573** -.576** 1

Sig. (2-tailed) .000 .000

N 91 91 91

Pearson Correlation.410** .435** -.587** -.106 .928** 1

Sig. (2-tailed) .000 .000 .000 .315 .000

N 91 91 91 91 91 91

Pearson Correlation.840** .853** -.866** -.291** .380** .676** 1

Sig. (2-tailed) .000 .000 .000 .005 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.139 .161 -.344** .017 .999** .933** .389** 1

Sig. (2-tailed) .187 .127 .001 .870 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.265* .288** -.441** -.028 .907** .898** .535** .912** 1

Sig. (2-tailed) .011 .006 .000 .792 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.444** -.443** .727** .555** .119 -.170 -.610** .115 .049 .390** .004 1

Sig. (2-tailed) .000 .000 .000 .000 .262 .106 .000 .279 .646 .000 .971

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.145 -.123 .180 .323** .631** .469** -.067 .629** .555** .530** .380** .579** 1

Sig. (2-tailed) .170 .245 .087 .002 .000 .000 .527 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.034 -.019 .059 .733** .178 .160 .007 .181 .132 .466** .119 .275** .301**

Sig. (2-tailed) .746 .856 .581 .000 .091 .129 .947 .085 .212 .000 .261 .008 .004

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.280** -.277** .546** .547** -.035 -.176 -.440** -.038 -.137 .353** .021 .596** .361**

Sig. (2-tailed) .007 .008 .000 .000 .741 .096 .000 .718 .195 .001 .844 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.217* -.203 .076 .257* .538** .362** -.095 .515** .408** .705** .200 .411** .629**

Sig. (2-tailed) .039 .054 .474 .014 .000 .000 .369 .000 .000 .000 .058 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

EVCud_

TpudN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_ud

R_ud

SMSP_u

d

PL_EVC

udN

Tpaths_

ud

TSpaths

_ud

AvgPL_u

d

AvgGL_u

d

Correlations

Edges_u

d

Den_ud

Table 1: Correlation Coefficients of Undirected Network  



www.manaraa.com

300 
 

 

Table 1 shows that the number of nodes (Nodes) and the number of ties 

(Edges_ud) have a strong positive correlation. As the number of nodes increase, the 

number of ties also increases. The Density (Den_ud) of this network has a strong 

negative correlation with both the number of nodes (Nodes) and the number of ties 

(Edges_ud). Total Paths (Tpaths_ud) has a negative correlation with Density (Den_ud) 

but has a strong positive correlation with Graph Diameter (GD_ud). Total Shortest Paths 

(TSpaths_ud) share a positive correlation with the number of nodes (Nodes), number of 

ties (Edges_ud) and Total Paths (Tpaths_ud) but share a negative correlation with 

Density (Den_ud). Average Path Length (AvgPL_ud) and Average Geodesic Length 

(AvgGL_ud) share a strong positive correlation with Graph Diameter (GD_ud) and Total 

Paths (Tpaths_ud). Average Geodesic Length (AvgGL_ud) shares a positive correlation 

with Total Shortest Paths (TSpaths_ud) and a strong correlation with Average Path 

Length (AvgPL_ud). Scale Free Metric (S_ud) shares a positive correlation with Density 

(Den_ud) and Clustering Coefficient (CC_ud) and a negative correlation with Total 

Shortest Paths (TSpaths_ud). Assortativity (R_ud) shares positive correlation with Graph 

Diameter (GD_ud), Average Path Length (AvgPL_ud), Average Geodesic Length 

(AvgGL_ud), Paths Power Law Distribution per Node (PL_TpudN) and Scale Free Metric 

(S_ud). Small World Metric (SMSP_ud) shares a positive correlation with Clustering 

Coefficient (CC_ud). Power law Distribution of Eigenvector Centrality per Node 

(PL_EVCudN) shares a positive correlation with Density (Den_ud), Clustering Coefficient 

(CC_ud) and Scale Free Metric (S_ud). Eigenvector Centrality with respect to Total Paths 
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per Node (EVCud_TpudN) correlates strongly with Graph Diameter (GD_ud), Average 

Path Length (AvgPL_ud), Paths Power Law Distribution per Node (PL_TpudN) and 

Assortativity (R_ud). 

A.2.7.1.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.2.7.1.2.1 Independent Variables 

 

 

 

 

The factor analysis generated two factors that explain 89.65% (greater than 80%) 

of the cumulative variance. Both factors have eigenvalues above one. Nodes and ties 

(Edges_ud) have significant factor loadings in factor 1. Density (Den_ud) and Clustering 

Figure 14: Factor Analysis Independent Variables Music Undirected Network  
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Coefficient (CC_ud) have significant loading in factor 2.Cronbach’s alpha for factor 1has 

a value of 0.999 and factor2 has a value of 0.389. This means nodes and ties are 

measuring same construct within factor 1 whereas density and clustering coefficient are 

not measuring the same construct. Hence, I name factor 1 as “Size”. 

A.2.7.1.2.2 Network Structure (MV1) 

 

 

 

 

The factor analysis generated three factors that explain 84.25% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor 3 

has eigenvalue below 1. Scale Free Metric (S_ud) and Assortativity (R_ud) have 

significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.402. 

Scale Free Metric (S_ud) and Assortativity (R_ud) are measuring different constructs 

Figure 15: Factor Analysis of Network Structure Variables  
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within factor 1. Hence, they should not be considered as a factor. Power Law 

Distribution of Total Paths per Node (PL_TpudN) and Small World Metric (SMSP_ud) 

have significant factor loadings in factor 2. Cronbach’s alpha for factor1 has a value of 

0.432. Power Law Distribution of Total Paths per Node (PL_TpudN) and Small World 

Metric (SMSP_ud) are measuring different constructs within factor 2. Hence, they 

should not be considered as a factor. All other variables load independently. 

A.2.7.1.2.3 Network Flow (MV2) 

 

 

The factor analysis generated one factor that explains 82.08% (greater than 80%) 

of the cumulative variance. Factor1 has eigenvalues above 1. All variables have 

significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.937. 

Hence, they should be considered as a factor.  

Figure 16: Factor Analysis of Network Flow Variables  
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A.2.7.1.2.4 Dependent Variables 

The value of Kaiser-Meyer-Olkin measure of sampling adequacy was 0.480 (less than 

0.5), and the significance Bartlett’s test of sphericity is 0.108. This data does not satisfy 

the measure of appropriateness for factor analysis.  Therefore, all the variables are 

considered independently.  

A.2.7.1.3 Regression Analysis 

 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Entertainment.pdf”. 

A.2.2.1.1.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 2 shows that the network structure variables have a significant impact on 

the network flow variables. Network structure variables explain 47.7%, 52.3%, 50.1%, 

47.7% and 40.6% variation in Graph Diameters (GD_ud), Total Paths (Tpaths_ud), Total 

Table 2: Impact of Network Structure on Network Flow  
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Shortest Paths (TSpaths_ud) Average Path Length (AvgPL_ud), and Average Geodesic 

Length (AvgGL_ud), respectively.  

A.2.7.1.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 3 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 21.2%, 20.7%, 55.9% and 

49.6% variation in the PL_TpudN, PL_TSpudN, S_ud and R_ud, respectively. The impact 

of network flow variables on PL_TSpudN is not taken into consideration, as the p-values 

are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 3: Impact of Network Flow on Network Structure 
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A.2.7.1.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 4 shows that the network structure variable Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) and 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN), explaining 

9.1%, 40.2% and 5.78% variation respectively. The impact of network flow variables on 

Eigenvector Centralization (EC_ud) is not taken into consideration, as their respective p-

values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 4: Impact of Network Structure on Network Phenomenon 
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A.2.7.1.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

 

Table 5 shows that the network flow variable impacts Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN), 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) and 

Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCud_TSpudN), 

explaining 5.6%, 18.4%, 28.2% and 7.6% variation respectively. The impact of network 

flow variables on Eigenvector Centralization (EC_ud), Eigenvector Centrality with respect 

to Total Shortest Paths per Node (EVCud_TSpudN) is not taken into consideration, as 

their respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 5: Impact of Network Flow on Network Phenomenon 
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A.2.7.1.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

Table 6 shows the collective impact of independent and moderating variables on 

the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_ud), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCudN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCud_TpudN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 12%, 4.1%, 59.7% and 7.6% 

variation respectively. The collective impact of independent variables and the 

moderating variables on Eigenvector Centralization (EC_ud) and Eigenvector Centrality 

with respect to Total Shortest Paths per Node (EVCud_TSpudN) is not taken into 

consideration, as their respective p-values are greater than the Bonferroni-adjusted p-

value of 0.000694. 

Table 6: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.2.7.2 The Directed Network 

A.2.7.2.1 Correlation Analysis 

Significant Correlations Coefficients for directed network are shown below in table 7. 

Significant correlations observed are marked in yellow. All correlations between all 

variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d AvgGL_d

PL_Tpd

N

PL_TSp

dN S_d

EVCd_T

pdN

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.572** -.576** .027 1

Sig. (2-tailed) .000 .000 .797

N 91 91 91 91

Pearson Correlation.644** .662** .249* -.756** .261* .663** 1

Sig. (2-tailed) .000 .000 .017 .000 .012 .000

N 91 91 91 91 91 91 91

Pearson Correlation.680** .697** .190 -.803** .242* .641** .988** 1

Sig. (2-tailed) .000 .000 .071 .000 .021 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.261* .283** .410** -.415** .313** .755** .850** .785** 1

Sig. (2-tailed) .013 .007 .000 .000 .002 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.216* .236* .359** -.455** .382** .765** .820** .796** .944** 1

Sig. (2-tailed) .040 .025 .000 .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.294** -.284** -.142 .261* -.215* .103 -.311** -.296** -.201 -.161 .748** 1

Sig. (2-tailed) .005 .006 .180 .012 .041 .333 .003 .004 .057 .126 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.444** -.443** .002 .726** -.080 -.186 -.564** -.599** -.307** -.334** .474** .541** 1

Sig. (2-tailed) .000 .000 .982 .000 .450 .077 .000 .000 .003 .001 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.340** -.326** .070 .533** -.067 .063 -.364** -.405** -.141 -.194 .603** .664** .906**

Sig. (2-tailed) .001 .002 .508 .000 .528 .554 .000 .000 .183 .065 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.024 .036 .372** -.099 1.000** .131 .261* .242* .313** .382** -.010 -.215* -.080

Sig. (2-tailed) .822 .731 .000 .353 0.000 .217 .012 .021 .002 .000 .923 .041 .450

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.260* -.275** -.392** .436** -.263* -.475** -.555** -.548** -.506** -.525** -.172 .126 .187

Sig. (2-tailed) .013 .008 .000 .000 .012 .000 .000 .000 .000 .000 .103 .232 .075

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.079 .095 .637** -.166 .315** .398** .335** .297** .394** .359** .178 .019 -.041

Sig. (2-tailed) .458 .372 .000 .116 .002 .000 .001 .004 .000 .000 .091 .860 .697

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.078 -.092 -.065 .128 .111 -.381** -.227* -.220* -.263* -.244* -.351** -.365** -.051 .952**

Sig. (2-tailed) .462 .386 .538 .228 .295 .000 .031 .036 .012 .020 .001 .000 .630 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

PL_EVC

dN

EVCd_T

SpdN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PL_TSp

dN

S_d

R_d

SMSP_d

ECd

Table 7: Correlation coefficients of directed network  
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Table 7 shows that nodes (Nodes) and ties (Edges_d) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Paths (Tpaths_d) in the network share a negative correlation with 

Density (Den_d). Total Shortest Paths (TSpaths_d) in the network correlate positively 

with the number of ties (Edges_d), Reciprocity and Total Paths (Tpaths_d) in the 

network. Total Shortest Paths (TSpaths_d) in the network share a negative correlation 

with Density (Den_d). Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power Law Distribution 

per Node (PL_TSpdN) correlates positively with Paths Power Law Distribution per Node 

(PL_TpdN). Scale Free Metric (S_d) seems to share a positive relationship with Density 

(Den_d) and Shortest Paths Power Law Distribution per Node (PL_TSpdN). Scale Free 

Metric (S_d) seems to share a negative relationship Total Paths (Tpaths_d) and Total 

Shortest Paths (TSpaths_d).  Assortativity (R_d) shares a positive relationship with 

(Den_d), Shortest Paths Power Law Distribution per Node (PL_TSpdN), Paths Power Law 

Distribution per Node (PL_TpdN) and Scale Free Metric (S_d). Small World Metric 

(SMSP_d) is strongly correlated with Clustering Coefficient (CC_d). Eigenvector 

Centralization (ECd) correlates negatively with Total Paths (Tpaths_d), Total Shortest 
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Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d). Power Law Distribution of Eigenvector Centrality per Node (PL_EVCdN) 

shares a positive correlation with Reciprocity. Eigenvector Centrality with respect to 

Total Shortest Paths per Node (EVCd_TSpdN) and Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN) correlate strongly with each other. 

A.2.7.2.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.2.7.2.2.1 Independent Variables 

 

 

 

Factor analysis generated three factors that explain 89.59% (greater than 80%) 

of cumulative variance. Factor 1 and factor2 have eigenvalues over 1. Factor3 has 

eigenvalue less than 1. Nodes and ties (Edges_d) have significant factor loadings in 

Figure 17: Factor Analysis of Independent Variables  
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factor 1. Density (Den_d) had negative loading in factor 1, hence it was removed. Only 

Clustering Coefficient (CC_d) and Reciprocity have significant loadings in factor 2 and 

factor 3.Cronbach’s alpha for factor 1 has a value of 0.999. This means nodes and ties 

are measuring same construct within factor 1. Hence, I name factor 1 as “Size”. 

A.2.7.2.2.2 Network Structure (MV1) 

 

 

 

 

Factor analysis generated two factors that explain 80.08% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Paths Power Law 

Distribution per Node (PL_TpdN), Shortest Paths Power Law Distribution per Node 

(PL_TSpdN), Assortativity (R_d) and Scale Free Metric (S_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.747. Paths Power Law 

Distribution per Node (PL_TpdN), Shortest Paths Power Law Distribution per Node 

(PL_TSpdN), Assortativity (R_d) and Scale Free Metric (S_d) are measuring same 

Figure 18: Factor Analysis of Network Structure Variables  

 



www.manaraa.com

313 
 

 

construct within factor 1. Hence, they should be considered as a factor. All other 

variables load independently. 

A.2.7.2.2.3 Network Flow (MV2) 

 

 

 

 

Factor analysis generated one factor that explains 84.251% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d) Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.923. Factor 1 is named as “Spread and Speed”. 

  

Figure 19: Factor Analysis of Network Flow Variables  
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A.2.7.2.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 84.53% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCd_TpdN) and 

Shortest Paths (EVCd_TSpdN) have significant factor loading on factor 2. Factor 2 has a 

Cronbach’s alpha of 0.975. I name the factor 2 as “Influence” as both, Eigenvector 

Centralities with respect to Paths (EVCd_TpdN) and Shortest Paths (EVCd_TSpdN), are 

being used measure of influence.  

  

Figure 20: Factor Analysis of Dependent Variables  
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A.2.7.2.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Entertainment.pdf”.. 

A.2.7.2.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 8 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 25.2%, 30.6%, 35.1%, 23.4% 

and 33.3% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively.  

  

Table 8:  Impact of Network Structure on Network Flow  
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A.2.7.2.3.2 Impact of Network Flow on Network Structure 

 

 

 

 

Table 9 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 25.3%, 25.1%, 35.1%, and 

32.6.0% variation in the PL_TpdN, PL_TSpdN, S_d and R_ud, respectively.  

  

Table 9: Impact of Network Flow on Network Structure 
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A.2.7.2.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 10 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN), Eigenvector Centrality with respect to Total Paths per Node (EVCd_TpdN) 

and Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCd_TSpdN), 

explaining 5.9%, 8.9%, 15.7% and 12.3% variation respectively. The impact of network 

flow variables Eigenvector Centralization (EC_d) and Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCdN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 10: Impact of Network Structure on Network Phenomenon 
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A.2.7.2.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

Table 11 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN), Eigenvector Centrality with respect to Total  Paths per Node (EVCud_TpdN) 

and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCud_TSpdN), explaining 30%, 14.9%, 13.5% and 13.5% variation respectively.  

  

Table 11: Impact of Network Flow on Network Phenomenon 
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A.2.7.2.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 12 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_d), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 36.2%, 45.6%, 23.9% and 23.5% 

variation respectively.  

  

Table 12: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.2.7.3 The Consumption Network 

A.2.7.3.1 Correlation Analysis 

Significant correlations coefficients for consumption network are shown below in 

table 13. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d AvgGL_d

PL_Tpin

N S_con

EVCin_T

pinN

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.572** -.576** .027 1

Sig. (2-tailed) .000 .000 .797

N 91 91 91 91

Pearson Correlation.644** .662** .249* -.756** .261* .663** 1

Sig. (2-tailed) .000 .000 .017 .000 .012 .000

N 91 91 91 91 91 91 91

Pearson Correlation.680** .697** .190 -.803** .242* .641** .988** 1

Sig. (2-tailed) .000 .000 .071 .000 .021 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.261* .283** .410** -.415** .313** .755** .850** .785** 1

Sig. (2-tailed) .013 .007 .000 .000 .002 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.216* .236* .359** -.455** .382** .765** .820** .796** .944** 1

Sig. (2-tailed) .040 .025 .000 .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.170 -.159 .068 .079 -.011 .382** .047 .047 .215* .276** .866**

Sig. (2-tailed) .108 .133 .523 .455 .920 .000 .658 .661 .041 .008 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.054 -.057 .067 -.132 .186 .174 .261* .281** .372** .502** .010 1

Sig. (2-tailed) .608 .589 .530 .212 .078 .099 .012 .007 .000 .000 .926

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.054 -.054 .085 -.153 .151 .253* .294** .311** .419** .543** .083 .985**

Sig. (2-tailed) .609 .612 .425 .148 .154 .015 .005 .003 .000 .000 .433 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.024 .036 .372** -.099 1.000** .131 .261* .242* .313** .382** -.020 .186

Sig. (2-tailed) .822 .731 .000 .353 0.000 .217 .012 .021 .002 .000 .850 .078

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.261* -.276** -.377** .421** -.187 -.410** -.525** -.511** -.467** -.427** -.036 -.100

Sig. (2-tailed) .013 .008 .000 .000 .076 .000 .000 .000 .000 .000 .731 .344

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.011 .017 .526** -.094 -.054 .190 .170 .167 .185 .200 .237* -.093

Sig. (2-tailed) .919 .876 .000 .375 .611 .072 .108 .113 .079 .058 .024 .382

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.219* -.215* -.002 .292** -.154 -.174 -.297** -.335** -.192 -.298** -.012 -.322** .961**

Sig. (2-tailed) .037 .041 .981 .005 .144 .098 .004 .001 .069 .004 .909 .002 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

PL_EVCi

nN

EVCin_T

SpinN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PL_TSpi

nN

S_con

R_con

SMSP_d

ECin

Table 13: Correlation coefficients of directed network  
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Tables 13 show that nodes (Nodes) and ties (Edges_ud) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Paths (Tpaths_d) in the network share a negative correlation with 

Density (Den_d). Total Shortest Paths (TSpaths_d) in the network correlate positively 

with the number of nodes (Nodes), number of ties (Edges_d), Reciprocity and Total 

Paths (Tpaths_d) in the network. Total Shortest Paths (TSpaths_d) in the network share 

a negative correlation with Density (Den_d). Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power 

Law Distribution per Node (PL_TSpinN) correlates positively with Paths Power Law 

Distribution per Node (PL_TpinN). Scale Free Metric (S_con) seems to share a positive 

relationship with Average Geodesic Length (AvgGL_d). Assortativity (R_con) shares a 

positive relationship with Average Geodesic Length (AvgGL_d) and Scale Free Metric 

(S_con). Small World Metric (SMSP_d) is strongly correlated with Clustering Coefficient 

(CC_d). Eigenvector Centralization (ECin) correlates negatively with Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d). Power Law Distribution of Eigenvector 

Centrality per Node (PL_EVCinN) shares a positive correlation with Reciprocity. 

Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCin_TSpinN) 
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and Eigenvector Centrality with respect to Total Paths per Node (EVCin_TpinN) correlate 

strongly with each other. 

A.2.7.3.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.2.7.3.2.1 Independent Variables 

 

 

 

Factor analysis generated three factors that explain 89.59% (greater than 80%) 

of cumulative variance. Factor 1 and factor2 have eigenvalue over 1. Factor3 has 

eigenvalue little less than 1. Nodes and ties (Edges_d) have significant factor loadings in 

factor 1. Density (Den_d) had negative loading in factor 1, hence it was removed. Only 

Clustering Coefficient (CC_d) and Reciprocity have significant loadings in factor 2 and 

Figure 21: Factor Analysis of Independent Variables  
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factor 3.Cronbach’s alpha for factor 1 has a value of 0.999. This means nodes and ties 

are measuring same construct within factor 1. Hence, I name factor 1 as “Size”. 

A.2.7.3.2.2 Network Structure (MV1) 

 

 

 

Factor analysis generated three factors that explain 97.365% (greater than 80%) 

of cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 has 

eigenvalue little less than 1. Assortativity (R_con) and Scale Free Metric (SMSP_d) have 

significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.666. 

Assortativity (R_con) and Scale Free Metric (SMSP_d) are measuring same construct 

within factor 1. Hence, they should be considered as a factor. Paths Power Law 

Distribution per Node (PL_TpinN) and Shortest Paths Power Law Distribution per Node 

(PL_TpinN) have significant factor loadings in factor 2. Cronbach’s alpha for factor1 has a 

Figure 22: Factor Analysis of Network Structure Variables  
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value of 0.928. . Paths Power Law Distribution per Node (PL_TpinN) and Shortest Paths 

Power Law Distribution per Node (PL_TpinN) are measuring same construct within 

factor 2. Hence, they should be considered as a factor. All other variables load 

independently. Factor 1 is named as “Structure”. Factor 2 is named as “Distribution”.  

A.2.7.3.2.3 Network Flow (MV2) 

 

 

 

 

Factor analysis generated one factor that explains 84.251% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.923. Factor 1 is named as “Spread and Speed”. 

  

Figure 23: Factor Analysis of Network Flow Variables  
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A.2.7.3.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 82.345% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCin_TpinN) and 

Shortest Paths (EVCin_TSpinN) have significant factor loading on factor 1. Factor 1 has a 

Cronbach’s alpha of 0.98. I name factor1 as “Influence” as both, Eigenvector centralities 

with respect to paths and shortest paths, are being used measure of influence.  

  

Figure 24: Factor Analysis of Dependent Variables  
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A.2.7.3.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Entertainment.pdf”. 

A.2.7.3.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 14 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 13.7%, 11.5%, 11.6%, 22.3% 

and 37.3% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on Total Paths 

(Tpaths_d) and Total Shortest Paths (TSpaths_d) are not taken into consideration, as the 

p-value is greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 14:  Impact of Network Structure on Network Flow  
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A.2.7.3.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 15 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 18.1%, 20.5%, 34.5%, and 

28.7% variation in the PL_TpinN, PL_TSpinN, S_con and R_con, respectively.  

A.2.7.3.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 16 shows that the network structure variable Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCinN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) and variable Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN), explaining 4.6%, 5.5% and 9.4% variation 

respectively. The impact of network flow variables on Power Law Distribution of 

Table 15: Impact of Network Flow on Network Structure 

 

Table 16: Impact of Network Structure on Network Phenomenon 
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Eigenvector Centrality per Node (PL_EVCinN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) and variable Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) are not taken into consideration, as their respective 

p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

A.2.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 17 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in), Eigenvector Centrality with respect to Total Paths per Node 

(EVCin_TpinN) and variable Eigenvector Centrality with respect to Total Paths per Node 

(EVCin_TpinN), explaining 26.8%, 7% and 12.8% variation respectively. The impact of 

network flow variables on EVCin_TpinN are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

 

 

Table 17: Impact of Network Flow on Network Phenomenon 
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A.2.7.3.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

Table 18 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_in), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCinN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCin_TSpinN), explaining 32.5%, 38.1%, 9.2%and 14.9% 

variation respectively. The collective impact of independent variables and the 

moderating variables on Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCinN) is not taken into consideration, as their respective p-values are greater 

than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 18: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.2.7.4 The Propagation Network 

A.2.7.4.1 Correlation Analysis 

Significant correlations coefficients for propagation network are shown below in 

table 19. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d

PL_Tpou

tN

EVCout_

TpoutN

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.572** -.576** .027 1

Sig. (2-tailed) .000 .000 .797

N 91 91 91 91

Pearson Correlation.644** .662** .249* -.756** .261* .663** 1

Sig. (2-tailed) .000 .000 .017 .000 .012 .000

N 91 91 91 91 91 91 91

Pearson Correlation.680** .697** .190 -.803** .242* .641** .988** 1

Sig. (2-tailed) .000 .000 .071 .000 .021 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.261* .283** .410** -.415** .313** .755** .850** .785** 1

Sig. (2-tailed) .013 .007 .000 .000 .002 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.216* .236* .359** -.455** .382** .765** .820** .796** .944**

Sig. (2-tailed) .040 .025 .000 .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.028 .035 -.077 -.389** .021 .424** .248* .268* .211* .703**

Sig. (2-tailed) .793 .740 .471 .000 .843 .000 .018 .010 .045 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.024 .036 .372** -.099 1.000** .131 .261* .242* .313** -.001

Sig. (2-tailed) .822 .731 .000 .353 0.000 .217 .012 .021 .002 .996

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.261* -.276** -.377** .421** -.187 -.410** -.525** -.511** -.467** -.165

Sig. (2-tailed) .013 .008 .000 .000 .076 .000 .000 .000 .000 .118

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.094 .111 .572** -.168 .246* .381** .319** .299** .358** .193

Sig. (2-tailed) .375 .294 .000 .112 .019 .000 .002 .004 .000 .067

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.260* .247* .014 -.370** .158 -.037 .312** .347** .151 -.076 .998**

Sig. (2-tailed) .013 .018 .894 .000 .134 .728 .003 .001 .152 .474 .000

N 91 91 91 91 91 91 91 91 91 91 91

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

PL_EVC

outN

EVCout_

TSpoutN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PL_TSp

outN

SMSP_d

ECout

Table 19: Correlation Coefficients of Directed Network  
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Table 19 shows that nodes and ties have a strong positive correlation. As the 

number of nodes (Nodes) increase, the number of ties (Edges_d) also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network.  Total Paths (Tpaths_d) in the network share a negative correlation with 

Density (Den_d). Total Shortest Paths (TSpaths_d) in the network correlate positively 

with the number of nodes (Nodes), number of ties (Edges_d), Reciprocity and Total 

Paths (Tpaths_d) in the network. Total Shortest Paths (TSpaths_d) in the network share 

a negative correlation with Density (Den_d). Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power 

Law Distribution per Node (PL_TSpoutN) correlates positively with Paths Power Law 

Distribution per Node (PL_TpoutN). Small World Metric (SMSP_d) is strongly correlated 

with Clustering Coefficient (CC_d). Eigenvector Centralization (ECout) correlates 

negatively Total Paths (Tpaths_d), Total Shortest Paths (TSpaths_d). Power Law 

Distribution of Eigenvector Centrality per Node (PL_EVCoutN) shares a positive 

correlation with Reciprocity. Eigenvector Centrality with respect to Total Shortest Paths 

per Node (EVCout_TSpoutN) and Eigenvector Centrality with respect to Total Paths per 

Node (EVCout_TpoutN)   correlate strongly with each other. 
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A.2.7.4.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.2.7.4.2.1 Independent Variables 

 

 

 

 

Factor analysis generated three factors that explain 89.59% (greater than 80%) 

of cumulative variance. Factor 1 and factor 2 have eigenvalues over 1. Factor3 has an 

eigenvalue that is little less than 1. Nodes and ties (Edges_d) have significant factor 

loadings in factor 1. Density (Den_d) had negative loading in factor 1, hence it was 

removed. Only Clustering Coefficient (CC_d) and Reciprocity have significant loadings in 

factor 2 and factor 3.Cronbach’s alpha for factor 1 has a value of 0.999. This means 

Figure 25: Factor Analysis of Independent Variables  
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nodes and ties are measuring same construct within factor 1. Hence, I name factor 1 as 

“Size”. 

A.2.7.4.2.2 Network Structure (MV1) 

 

 

Factor analysis generated three factors that explain 85.99% (greater than 80%) 

of cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 has an 

eigenvalue that is little less than 1. Assortativity (R_pro), Power Law Distribution of 

Paths per Node (PL_TpoutN) and Power Law Distribution of Shortest Paths per Node 

(PL_TSpoutN) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 

has a value of 0.648. Assortativity (R_pro) and Scale Free Metric (S_pro) have significant 

factor loadings in factor2. Cronbach’s alpha for factor1 has a value of 0.129. 

Assortativity (R_pro), Power Law Distribution of Paths per Node (PL_TpoutN) and Power 

Law Distribution of Shortest Paths per Node (PL_TSpoutN) are measuring same 

Figure 26: Factor Analysis of Network Structure Variables  
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construct within factor 1. Hence, they should be considered as a factor. All other 

variables load independently. Factor1 is named as “Structure”. Assortativity (R_pro) and 

Scale Free Metric (S_pro) are not measuring same construct within factor 1. Hence, they 

should not be considered as a factor. All other variables load independently. 

A.2.7.4.2.3 Network Flow (MV2) 

 

 

 

 

Factor analysis generated one factor that explains 84.251% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.923. Factor 1 is named as “Spread and Speed”. 

  

Figure 27: Factor Analysis of Network Flow Variables  
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A.2.2.1.4.2.4 Dependent Variables 

 

 

 

Factor analysis generated two factors that explain 86.54% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCout_TpoutN) 

and Shortest Paths (EVCout_TSpoutN) have significant factor loading on factor 1. Factor 

1 has a Cronbach’s alpha of 0.999. I name factor1 as “Influence” as both, Eigenvector 

Centralities with respect to Paths (EVCout_TpoutN) and Shortest Paths 

(EVCout_TSpoutN), are being used measure of influence.  

  

Figure 28: Factor Analysis of Dependent Variables  
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A.2.7.4.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Entertainment.pdf”.. 

A.2.7.4.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 20 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 22.7%, 10.7%, 14.3%, 12% 

and 19.7% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on Total Paths 

(Tpaths_d) Total Shortest Paths (TSpaths_d) and Average Path Length (AvgPL_d) are not 

taken into consideration, as the p-value is greater than the Bonferroni-adjusted p-value 

of 0.000694. 

 

Table 20:  Impact of Network Structure on Network Flow  
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A.2.7.4.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 21 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 21.4%, 17.1%, 20.4%, and 

31.5% variation in the PL_TpoutN, PL_TSpoutN, S_pro, and R_pro, respectively.  

A.2.7.4.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 22 shows that the network structure variable impacts Powel Law 

Distribution of Eigenvector Centrality with respect to Nodes (PL_EVCoutN), Eigenvector 

Centrality with respect to Total Paths per Node (EVCout_TpoutN) and Eigenvector 

Table 21: Impact of Network Flow on Network Structure 

 

  Table 22: Impact of Network Structure on Network Phenomenon 
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Centrality with respect to Total Shortest Paths per Node (EVCout_TSpoutN), explaining 

12.8%, 42.2% and 43.2% variation respectively.  

A.2.7.4.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

Table 23 shows that the network structure variable impacts Eigenvector 

Centralization (ECout), Powel Law Distribution of Eigenvector Centrality with respect to 

Nodes (PL_EVCoutN), Eigenvector Centrality with respect to Total Paths per Node 

(EVCout_TpoutN) and Eigenvector Centrality with respect to Total Shortest Paths per 

Node (EVCout_TSpoutN), explaining 26.8%, 13.6%, 22.6% and 21.7% variation 

respectively. 

 

 

 

 

Table 23: Impact of Network Flow on Network Phenomenon 
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A.2.7.4.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

Table 24 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_out), Power Law 

Distribution of Eigenvector Centrality per Node (PL_EVCoutN), Eigenvector Centrality 

with respect to Total Paths per Node (EVCout_TpoutN) and Eigenvector Centrality with 

respect to Total Shortest Paths per Node (EVCout_TSpoutN), explaining 32.5%, 41.3%, 

46.6%and 49.5% variation respectively.  

 

Table 24: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 



www.manaraa.com

340 
 

 

A.3 Case 3--Comedy 

A.3.1 Case Overview 

Data for keyword “YouTube + comedy” was collected over a period of 91 days 

(31/12/2013 to 31/03/2014). As shown in table 9, overall 94,111 tweets were collected, 

out of which 33,350 were broadcast tweets and 60,761 were engaged tweets 

respectively. Out of 60,761 engaged tweets only 25,624 tweets formed the largest 

community. Similarly, 83,175 daily unique people tweeted overall, out of which 37,456 

daily unique people were engaged in broadcast activity whereas 45,719 daily unique 

people were engaged in conversations. Out of 45,719 daily unique people only 24,555 

daily unique people formed the largest community.  Data for the largest community was 

analyzed at a daily interval. The overall trends for the comedy data are shown below in 

figure 1 and figure 2.  

 

 

 

 

Figure 1: Overall Tweets 
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Figure 1 and figure 2 shows that both the total tweets and total people involved 

are very dynamic and their magnitude changes on a daily basis. The maximum of the 

total number of daily tweets and the maximum of the total number of daily unique 

people observed on a single day (the daily uniques) are 2,178 and 1,968, respectively. 

Similarly, the minimum of the total number daily tweets and the minimum of the 

number daily unique are 508 and 526, respectively.  The size of the largest community 

on a particular day and the largest number of community tweets on that day also seem 

to follow the trend of total people and total tweets. The largest number of daily 

community tweets and the largest number of daily unique people are 832 and 833, 

respectively.   Similarly, the smallest number of daily community tweets and the 

smallest number of daily unique people are 131 and 130, respectively. As the total 

number of daily unique people tweeting increases, so does the size of the community. 

Figure 2: Overall People 



www.manaraa.com

342 
 

 

Most of the engaged people are engaged in the collective conversation forming the 

largest community. 

A.3.2 Random or Not Random 

As explained in section 4.4.1, in order to eliminate α- error and β- error, I 

compare the clustering coefficients of both undirected (CC_ud) and directed networks 

(CC_d) with their corresponding random (Erdös-Rényi, E-R) networks (CCudran, CCdran). 

If the clustering coefficients of the undirected and directed networks are equal to those 

of the E-R random network, then the directed and undirected networks are considered 

to be random. If they are not equal, then they are not random.  

 

 

 

 

Figure 3: Comparison of Clustering Coefficients of Undirected Network with E-R Networks 

Figure 4: Comparison of Clustering Coefficients of Directed Network with E-R Networks 



www.manaraa.com

343 
 

 

As seen in figure 3 and figure 4 clustering coefficients of the undirected networks 

follows a very different pattern from their corresponding E-R networks. Therefore, the 

undirected network is considered to be non-random networks and the variables 

computed are a true reflection of network’s features. For the direct network the 

clustering coefficients (CC_d) is zero for the most part. Therefore, the directed networks 

are random. 

A.3.3. Independent Variables 

The values of the independent variables for both the undirected and the directed 

network are shown in figure 5 below. 

 

 

 

Figure 5: Independent Variables--(a) Nodes and Edges (Undirected and Directed networks), (b) 

Reciprocity (Directed Networks), (c) Density (Undirected and Directed Networks), (d) Clustering 

Coefficient Undirected Network, (e) Clustering Coefficient Directed Network. 
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Figure 5(a) shows that the number of directed ties (Edges_d) in the network and 

the total number of nodes (Nodes) overlap with each other. The numbers of undirected 

ties (Edges_ud) is greater than the number of directed ties (Edges_d), because in an 

undirected network every directed tie is considered to be symmetric. Therefore it is 

counted twice, except for the ones that are symmetric in a directed network. 

Reciprocity in Figure 5(b) indicates the presence of symmetric ties in a directed network 

(in an undirected network 100% are symmetric). The value of 0.01 is equal to 1% of all 

the ties. Figure 5(c) shows the difference between the densities of the undirected 

(Den_ud) and the directed networks (Den_d). The undirected network is denser than 

the directed network (Den_ud>Den_d). Figure 5(d) shows that the directed networks 

have higher Clustering Coefficients than the undirected networks (CC_d >CC_ud). 
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A.3.4 Network Structure Variables (MV1) 

A.3.4.1 The Scale Free Metric 

 

 

 

Figure 6 shows the Scale Free Metric for the undirected, directed, consumption and 

propagation networks (S_ud, S_d, S_con, S_pro). The Scale Free Metrics for the undirected 

(S_ud) and the directed network (S_d) are similar, but the Scale Free Metrics for the 

consumption (S_con) and propagation (S_pro) networks are very different. The propagation 

network is more scale free than the consumption network (S_pro >S_con). The values of 

the scale free metric ranges between 0 and 1. When the values are closer to 1, it means 

that the networks are more scale free. Neither the directed (S_d) nor the undirected 

network (S_ud) is scale free. This means that these networks may have hubs in them. 

Figure 6: Scale Free Metric--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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However, there is not just one hub that is the center of the community. As shown in 

figure 6 (c) the propagation network is more scale free than the consumption network 

shown in figure 6 (d). 

A.3.4.2 The Assortativity 

 

 

 

Figure 7 shows the assortativity metric for the undirected, directed, 

consumption and propagation networks (R_ud, R_d, R_con, R_Pro). The value of the 

assortativity metric ranges between -1 and 1. When the values are closer to -1, it means 

that networks are disassortative. The undirected network is more Disassortative than 

Figure 7: Assortativity--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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the directed network (R_d > R_ud). Among the directed networks, the consumption 

network is more Disassortative than the propagation network (R_pro > R_con). 

Disassortative means that the nodes in the network connect to nodes that are very 

similar to themselves. This is true more so in the undirected network and in the 

consumption network than it is in the directed network and the propagation network. 

This implies that disassortativeness of consumption contributes more to the 

disassortativeness of the directed network than the disassortativeness of the 

propagation does.  

A.3.4.3 The Small World Metric 

 

 

 

Figure 8 shows the Small World Metric for the undirected (SMSP_ud) and 

directed networks (SMSP_d). The Small World Metrics for the consumption and 

propagation networks are the same as the ones for the directed network. The directed 

networks don’t show any small world behavior. Contrary to the directed networks, 

undirected networks show some small world behavior but not significantly enough. This 

Figure 8: Small World Metric -- (a) Undirected Network, (b) Directed Network.  
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means that in undirected networks there are more nodes that act as hubs that facilitate 

communication between other nodes of the network. 

A.3.4.4 Paths and Shortest Paths Power law Distribution per Node 

 

 

 

Figure 9 (a) shows that, in the undirected network, paths are more uniformly 

distributed among nodes than shortest paths are distributed among nodes. This means 

that fewer nodes are responsible for more of the shortest paths in the undirected 

network. There are fewer instances of shortest path following power law distribution in 

undirected (figure 9 (a)) and consumption (figure 9 (c)) networks. In the directed (figure 

9 (b)) and propagation (figure 9 (d)) networks, there are no such patterns. 

Figure 9: Power Law Distribution of Paths and Shortest Paths in (a) Undirected Network, (b) 

Directed Network, (c) Consumption Network, (d) Propagation Network. 
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A.3.5 Network Flow Variables (MV2) 

 

 

 

 

Figure 10 (a), shows that total number of paths in the undirected network 

(Tpaths_ud) is orders of magnitude higher than the total number of shortest paths 

(TSpaths_ud). The total number of paths (Tpaths_d) and the total number of shortest 

paths (TSpaths_d) map more closely in the directed network. In figure 10 (b), a similar 

trend is observed in the Average Path Lengths (AvgPL_ud, AvgPL_d) and the Average 

Figure 10: Network Flow Variables-- (a) Total Paths and Total Shortest Paths, (b) 

Average Paths and Average Shortest Paths, (c) Undirected and Directed Network Graph 

Diameter. 
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Geodesic Lengths (AvgGL_ud, AvgGL_d) of the undirected and directed networks. In 

figure 10 (c), the Graph Diameter (GD_ud) of the undirected network is larger than the 

graph diameter of the directed network (GD_d). It is also noteworthy that, in figure 10 

(b) and in figure 10 (c), the Graph Diameter (GD_ud, GD_d) and the Average Path Length 

(AvgPL_ud, AvgPL_d) of the undirected and directed networks track pretty closely. 

A.3.6 Dependent Variables  

A.3.6.1 Eigenvector Centralization 

 

 

 

Figure 11 shows that nodes with influence are lot more central in the undirected 

and propagation networks than in the directed network (ECud > ECd). The consumption 

and propagation networks exhibit same level of centralization. 

 

 

 

Figure 11: Eigenvector Centralization in the Undirected, Directed, Consumption and 

Propagation Networks 
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A.3.6.2 Power law Distribution of Eigenvector Centrality per Node 

 

 

 

 

Figure 12 shows that in the undirected network eigenvector centrality values are 

consistently distributed in a power law distribution pattern (PL_EVCud), over a period of 

time. In the directed, the consumption and the propagation network the distribution of 

eigenvector centrality follows a power law distribution (PL_EVCd, PL_EVCin, PL_EVCout) 

pattern only sometimes. 

 

 

 

 

 

 

Figure 12: Power Law Distribution of Eigenvector Centrality in Undirected, Directed, 

Consumption and Propagation Network 
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A.3.6.3 Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node 

 

 

 

 

 

In figure 13, only those correlation coefficients with a significance value lower 

than 0.05 are shown. In figure 13 (a), there is a significant correlation between the 

eigenvector centrality of a node and the number of paths from a node in undirected 

network (EVCud_TpUDN). There is no significant correlation between eigenvector 

Figure 13: Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and Eigenvector 

Centrality vs. Total Shortest Paths per Node--(a) Undirected Network, (b) Directed Network, (c) 

Consumption Network, (d) Propagation Network. 
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centrality of a node and shortest paths from a node in undirected network 

(EVCud_TSpUDN). In figure 13 (b), there is a significant correlation between the 

directed-eigenvector centrality of a node and the number of paths and shortest paths 

ending on a node in the directed network (EVCd_TpDN, EVCud_TSpUDN). In figure 13 

(c), there is a significant correlation between the in-eigenvector centrality of a node and 

the number of paths and shortest paths ending on a node in the consumption network 

(EVin_TpinN, EVCin_TSpinN). The correlation between the out-eigenvector centrality of 

a node and the number of shortest paths is less significant figure 13 (d) 

(EVCout_TpoutN, EVCout_TSpoutN). 
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A.3.7 Statistical Analysis 

A.3.7.1 The Undirected Network 

A.3.7.1.1 Correlation Analysis 

In Table 1, the statistically significant Correlation Coefficients for the undirected 

network are marked in yellow. All correlations between all variables are shown in 

supplemental file titled “Correlations.pdf”. 

 

 

Nodes

Edges_

ud Den_ud CC_ud GD_ud

Tpaths_

ud

TSpath

s_ud

AvgPL_

ud

AvgGL_

ud

PL_Tpu

dN S_ud

Pearson Correlation.991
** 1

Sig. (2-tailed).000

N 91 91

Pearson Correlation-.850
**

-.840
** 1

Sig. (2-tailed).000 .000

N 91 91 91

Pearson Correlation.159 .173 -.155 .227
*

.943
** 1

Sig. (2-tailed).133 .100 .143 .031 .000

N 91 91 91 91 91 91

Pearson Correlation.946
**

.964
**

-.923
** -.085 -.078 .194 1

Sig. (2-tailed).000 .000 .000 .420 .465 .065

N 91 91 91 91 91 91 91

Pearson Correlation-.097 -.085 .082 .249
*

.996
**

.958
** -.066 1

Sig. (2-tailed).363 .422 .438 .017 .000 .000 .536

N 91 91 91 91 91 91 91 91

Pearson Correlation.201 .225
*

-.208
* .130 .696

**
.730

**
.286

**
.697

** 1

Sig. (2-tailed).056 .032 .048 .221 .000 .000 .006 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.688
**

-.681
**

.753
**

.335
**

.316
** .083 -.730

**
.312

** .183 .296
** 1

Sig. (2-tailed).000 .000 .000 .001 .002 .436 .000 .003 .082 .004

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.318
**

-.272
**

.231
*

.355
**

.645
**

.549
**

-.211
*

.643
**

.667
**

.435
**

.620
**

Sig. (2-tailed).002 .009 .027 .001 .000 .000 .045 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.035 .034 .037 .971
**

.234
*

.249
* .020 .244

* .131 .178 .249
*

Sig. (2-tailed).740 .749 .725 .000 .026 .017 .849 .020 .217 .091 .017

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.277
**

-.250
*

.214
* .104 .327

** .113 -.216
*

.250
*

.236
*

.777
**

.291
**

Sig. (2-tailed).008 .017 .041 .327 .002 .286 .040 .017 .024 .000 .005

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.506
**

-.467
**

.281
** .019 -.199 -.326

**
-.362

** -.203 -.331
** .033 .211

*

Sig. (2-tailed).000 .000 .007 .855 .059 .002 .000 .054 .001 .756 .044

N 91 91 91 91 91 91 91 91 91 91 91

EVCud_

TpudN

EVCud_

TSpudN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_ud

R_ud

SMSP_u

d

Tpaths_

ud

TSpaths

_ud

AvgPL_u

d

AvgGL_u

d

Correlations

Edges_u

d

Den_ud

Table 1: Correlation Coefficients of Undirected Network  
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In Table 1, the number of nodes (Nodes) and the number of ties (Edges_ud) have 

a strong positive correlation. As the number of nodes (Nodes) increases, the number of 

ties (Edges_ud) also increases. The Density (Den_ud) of this network has a strong 

negative correlation with both the number of nodes (Nodes) and the number of ties 

(Edges_ud). Total Paths (Tpaths_ud) have a strong positive correlation with Graph 

Diameter (GD_ud). The Total Number of Shortest Paths (TSpaths_ud) correlates strongly 

with the number of nodes (Nodes) and the number of ties (Edges_ud), but it correlates 

negatively with Density (Den_ud). Average Path Length (AvgPL_ud) and Average 

Geodesic Length (AvgGL_ud) share a strong positive correlation with Graph Diameter 

(GD_ud) and Total Paths (Tpaths_ud). Average Geodesic Length (AvgGL_ud) shares a 

strong correlation with Average Path Length (AvgPL_ud). Scale Free Metric (S_ud) shares 

a positive correlation with Density (Den_ud) and negative correlations with number of 

number of nodes (Nodes), the number of ties (Edges_ud) and Total Number of Shortest 

Paths (TSpaths_ud). Assortativity (R_ud) shares positive correlations with Graph 

Diameter (GD_ud), Total Paths (Tpaths_ud), Average Path Length (AvgPL_ud), Average 

Geodesic Length (AvgGL_ud) and Scale Free Metric (S_ud). Small World (SMSP_ud) 

metric share a positive relationship with the Clustering Coefficients (CC_ud). Eigenvector 

Centrality with respect to Total Paths per Node (EVCud_TpudN) and correlate strongly 

Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN). Eigenvector 

Centrality with respect to Total Shortest Paths per Node (EVCud_TSpudN) correlates 

negatively with number of nodes.  
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A.3.7.1.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis are 

shown in supplemental file titled “Factor Analysis.pdf”. 

A.3.7.1.2.1 Independent Variables 

 

 

 

The factor analysis generated two factors that explain 94.91% (greater than 80%) 

of the cumulative variance. Both factors have eigenvalues above one. Nodes and ties 

(Edges_ud) have significant factor loadings in factor 1. Density (Den_ud) had a negative 

loading in factor 1, hence it was removed. Only the Clustering Coefficient (CC_ud) has a 

significant loading in factor 2.Cronbach’s alpha for factor 1 has a value of 0.995. This 

means nodes and ties are measuring same construct within factor 1. Hence, I name 

factor 1 as “Size”.  

  

Figure 14: Factor Analysis Independent Variables Music Undirected Network  
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A.3.7.1.2.2 Network Structure (MV1) 

 

 

 

 

The factor analysis generated four factors that explain 93.186% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 

and factor4 have eigenvalues below 1. Scale Free Metric (S_ud) and Assortativity (R_ud) 

have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 

0.442. Scale Free Metric (S_ud) and Assortativity (R_ud) are measuring different 

constructs within factor 1. Hence, they should not be considered as a factor. All other 

variables load independently. 

Figure 15: Factor Analysis of Network Structure Variables  
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A.3.7.1.2.3 Network Flow (MV2) 

 

 

The factor analysis generated two factors that explain 93.172% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalue above 1. Factor2 has 

eigenvalue below 1. Graph Diameter (GD_ud), Total Paths (Tpaths_ud), Average 

Geodesic Length (AvgGL_ud) and Average Path Length (AvgPL_ud) have significant 

factor loadings in factor 1.  Cronbach’s alpha for factor1 has a value of 0.937. Hence, 

they should be considered as a factor.  

A.3.7.1.2.4 Dependent Variables 

The value of Kaiser-Meyer-Olkin measure of sampling adequacy was 0.475 (less 

than 0.5), and the significance Bartlett’s test of sphericity is 0.133. This data does not 

satisfy the measure of appropriateness for factor analysis.  Therefore, all the variables 

are considered independently.  

Figure 16: Factor Analysis of Network Flow Variables  
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A.3.7.1.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Comedy.pdf”. 

A.3.7.1.3.1 Impact of Network Structure on Network Flow 

 

 

 

 

Table 2 shows that the network structure variables have a significant impact on 

the network flow variables. Network structure variables explain 41%, 39.6%, 63.4%, 

40.7% and 52.1% variation in Graph Diameter (GD_ud), Total Paths (Tpaths_ud), Total 

Shortest Paths (TSpaths_ud), Average Path Length (AvgPL_ud) and Average Geodesic 

Length (AvgGL_ud), respectively.  

  

Table 2: Impact of Network Structure on Network Flow  
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A.3.7.1.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 3 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 4%, 3.2%, and 16.7% 

variation in the PL_TpudN, S_ud R_ud, and SMSP_ud respectively. The impact of 

network flow variables on SMSP_ud is not taken into consideration, as the p-values are 

greater than the Bonferroni-adjusted p-value of 0.000694.  

Table 3: Impact of Network Flow on Network Structure 
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A.3.7.1.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 4 shows that the network structure variable Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) and 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN), explaining 

10.5%, 8.2% and 6.4% variation respectively. The impact of network flow variables on 

Eigenvector Centralization (EC_ud) and Power Law Distribution of Eigenvector Centrality 

per Node (PL_EVCudN) are not taken into consideration, as their respective p-values are 

greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 4: Impact of Network Structure on Network Phenomenon 
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A.3.7.1.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

Table 5 shows that the network flow variable impacts Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) and 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN), explaining 

7.6%, 3.3% and 9.7% variation respectively. The impact of network flow variables on 

Eigenvector Centralization (EC_ud), and Power Law Distribution of Eigenvector 

Centrality per Node (PL_EVCudN) are not taken into consideration, as their respective p-

values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 5: Impact of Network Flow on Network Phenomenon 
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A.3.7.1.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables.  

 

 

 

 

Table 6 shows the collective impact of independent and moderating variables on 

the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_ud), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCudN) and Eigenvector Centrality with respect 

to Total Paths per Node (EVCud_TpudN), explaining 15.7%, 4.5% and 4.6% variation 

respectively. The collective impact of independent variables and the moderating 

variables on Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) 

and Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) is not 

taken into consideration, as their respective p-values are greater than the Bonferroni-

adjusted p-value of 0.000694. 

  

Table 6: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.3.7.2 The Directed Network 

A.3.7.2.1 Correlation Analysis 

Significant Correlations Coefficients for directed network are shown below in 

table 7. Significant correlations observed are marked in yellow. All correlations between 

all variables are shown in supplemental file titled “Correlations.pdf”. 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d

PL_Tpd

N

PL_TSp

dN S_d ECd

PL_EVC

dN

EVCd_T

pdN

EVCd_T

SpdN

Pearson Correlation.990** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.849** -.838** .209* 1

Sig. (2-tailed) .000 .000 .047

N 91 91 91 91

Pearson Correlation.803** .824** .028 -.763** .030 .352** 1

Sig. (2-tailed) .000 .000 .789 .000 .779 .001

N 91 91 91 91 91 91 91

Pearson Correlation.827** .846** -.030 -.807** -.008 .278** .987** 1

Sig. (2-tailed) .000 .000 .780 .000 .937 .008 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.201 .206 .249* -.139 .124 .694** .674** .584** 1

Sig. (2-tailed) .057 .051 .017 .190 .243 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.111 .114 .161 -.098 .019 .626** .600** .573** .891**

Sig. (2-tailed) .296 .280 .128 .355 .860 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.397** -.372** .242* .376** .075 .301** -.241* -.273** .054 .938** 1

Sig. (2-tailed) .000 .000 .021 .000 .479 .004 .021 .009 .609 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.688** -.680** .225* .754** .127 .150 -.510** -.547** .024 .449** .473** 1

Sig. (2-tailed) .000 .000 .032 .000 .229 .155 .000 .000 .819 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.426** -.385** .228* .376** .158 .334** -.145 -.182 .195 .644** .629** .769**

Sig. (2-tailed) .000 .000 .030 .000 .134 .001 .171 .084 .064 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.036 -.020 .419** .073 1.000** .163 .032 -.006 .125 .027 .075 .128

Sig. (2-tailed) .737 .850 .000 .490 .000 .123 .764 .956 .240 .797 .481 .226

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.111 .136 .660** .000 .289** .324** .272** .225* .360** .305** .302** .140 -.504** 1

Sig. (2-tailed) .297 .198 .000 .998 .005 .002 .009 .032 .000 .003 .004 .184 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.135 -.165 -.335** .066 -.015 -.139 -.166 -.167 -.088 -.159 -.106 .064 .577** -.530** 1

Sig. (2-tailed) .201 .118 .001 .533 .886 .189 .117 .114 .407 .133 .317 .544 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.133 -.164 -.347** .062 -.040 -.141 -.163 -.165 -.084 -.165 -.113 .058 .584** -.540** .999** 1

Sig. (2-tailed) .208 .121 .001 .557 .705 .183 .123 .118 .428 .118 .285 .586 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

PL_EVC

dN

EVCd_T

pdN

EVCd_T

SpdN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_d

R_d

SMSP_d

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

PL_TSp

dN

Table 7: Correlation coefficients of directed network  
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Table 7 shows that nodes (Nodes) and ties (Edges_d) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) and Total Shortest Paths 

(TSpaths_d) in the network correlate positively with the number of nodes (Nodes) and 

ties (Edges_d). Total Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d) in the 

network share a negative correlation with Density (Den_d). Total Paths (Tpaths_d) and 

Total Shortest Paths (TSpaths_d) correlate positively with each other. Average Path 

Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) correlates with Graph 

Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest Paths (TSpaths_d) and with 

each other. Shortest Paths Power Law Distribution per Node (PL_TSpdN) correlates 

positively with Paths Power Law Distribution per Node (PL_TpdN). Scale Free Metric 

(S_d) seems to share a positive relationship with Density (Den_d). Scale Free Metric 

(S_d) shares a negative relationship with the number nodes (Nodes), ties (Edges_d), 

Total Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d).  Assortativity (R_d) shares 

a positive relationship with Shortest Paths Power Law Distribution per Node 

(PL_TSpdN), Paths Power Law Distribution per Node (PL_TpdN) and Scale Free Metric 

(S_d). Small World Metric (SMSP_d) is strongly correlated with Clustering Coefficient 

(CC_d). Power Law Distribution of Eigenvector Centrality per Node (PL_EVCdN) shares a 

positive correlation with Reciprocity and a negative correlation with the Eigenvector 

Centralization (ECd). Eigenvector Centrality with respect to Total Shortest Paths per 
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Node (EVCd_TSpdN) and Eigenvector Centrality with respect to Total Paths per Node 

(EVCd_TpdN) share a positive correlation with Eigenvector Centralization (ECd) and a 

negative correlation with the Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN). Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCd_TSpdN) and Eigenvector Centrality with respect to Total Paths per Node 

(EVCd_TpdN) correlate strongly with each other. 

A.3.7.2.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.3.7.2.2.1 Independent Variables 

 

 

 

The factor analysis generated two factors that explain 84.315% (greater than 

80%) of the cumulative variance. Both factors have eigenvalues above one. Nodes and 

Figure 17: Factor Analysis of Independent Variables  
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ties (Edges_d) have significant factor loadings in factor 1. Density (Den_d) had a 

negative loading in factor 1, hence it was removed. Clustering Coefficient (CC_d) and 

Reciprocity have a significant loading in factor 2.Cronbach’s alpha for factor1 has a value 

of 0.994. This means nodes and ties are measuring same construct within factor 1. 

Hence, I name factor 1 as “Size”. Cronbach’s alpha for factor2 has a value of 0.32. This 

means reciprocity and clustering coefficient s are not measuring same construct within 

factor2. 

A.3.7.2.2.2 Network Structure (MV1) 

 

 

Factor analysis generated two factors that explain 80.001% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Paths Power Law 

Distribution per Node (PL_TpdN), Shortest Paths Power Law Distribution per Node 

Figure 18: Factor Analysis of Network Structure Variables  
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(PL_TpdN), Assortativity (R_d) and Scale Free Metric (S_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.761. Paths Power Law 

Distribution per Node (PL_TpdN), Shortest Paths Power Law Distribution per Node 

(PL_TpdN), Assortativity (R_d) and Scale Free Metric (S_d) are measuring same 

construct within factor 1. Hence, they should be considered as a factor. All other 

variables load independently. 

A.3.7.2.2.3 Network Flow (MV2) 

 

 

Factor analysis generated two factors that explain 80.001% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Graph Diameter 

(GD_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) have significant 

factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.813. Graph Diameter 

(GD_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) are measuring 

the same construct within factor 1. Factor 1 is named as “Spread and Speed Boundary”.  

Figure 19: Factor Analysis of Network Flow Variables  
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Total Paths (Tpaths_d) and Total Shortest Paths (Tpaths_d) have significant factor 

loadings on factor2. Cronbach’s alpha for factor2 has a value of 0.991. Total Paths (Tpaths_d) 

and Total Shortest Paths (Tpaths_d) are measuring the same construct within factor2. Factor2 is 

named as “Spread and Speed”. 

A.3.7.2.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 87.768% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCd_TpD) and Shortest 

Paths (EVCd_TSpD) have significant factor loading on factor 1. Factor 1 has a Cronbach’s alpha of 

1. I name factor1 as “Influence” as both, Eigenvector Centralities with respect to Paths 

(EVCd_TpD) and Shortest Paths (EVCd_TSpD), are being used measure of influence. All other 

variables load independently. 

Figure 20: Factor Analysis of Dependent Variables  
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A.3.7.2.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Comedy.pdf”. 

A.3.7.2.3.1 Impact of Network Structure on Network Flow 

 

 

Table 8 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 10.2%, 39.8%, 42.6%, 3.7% 

variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest Paths 

(TSpaths_d),) and Average Geodesic Length (AvgGL_ud), respectively. The impact of 

network structure variables on Graph Diameter (GD_d) and Average Geodesic Length 

(AvgGL_ud) are not taken into consideration, as the p-value is greater than the 

Bonferroni-adjusted p-value of 0.000694. 

  

Table 8:  Impact of Network Structure on Network Flow  
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A.3.7.2.3.2 Impact of Network Flow on Network Structure 

 

 

Table 9 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 20.8%, 21.1%, 52.9%, and 

20.4% variation in the PL_TpdN, PL_TSpdN, S_d, and R_ud, respectively.  

A.3.7.2.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 10 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d) and Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN). Network structure variables explain 15.5% variation in Eigenvector 

Centralization (EC_d). 

 

Table 9: Impact of Network Flow on Network Structure 

 

Table 10: Impact of Network Structure on Network Phenomenon 
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A.3.7.2.3.4 Impact of Network Flow on Network Phenomenon 

 

 

Table 11 shows that the network structure variable Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCdN), explaining 9.5% variation respectively. The 

impact of network Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN) is not taken into consideration, as their respective p-values are greater than 

the Bonferroni-adjusted p-value of 0.000694. 

  

Table 11: Impact of Network Flow on Network Phenomenon 
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A.3.7.2.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

 

Table 12 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_d), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 24.6%, 54.6%, 13.2% and 14% 

variation respectively. The collective impact of independent variables and the 

moderating variables on Eigenvector Centrality with respect to Total Paths per Node 

(EVCd_TpdN) is not taken into consideration, as their respective p-values are greater 

than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 12: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.3.7.3 The Consumption Network 

A.3.7.3.1 Correlation Analysis 

Significant correlations coefficients for consumption network are shown below in 

table 13. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d

PL_Tpin

N ECin

Pearson Correlation.990** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.849** -.838** .209* 1

Sig. (2-tailed) .000 .000 .047

N 91 91 91 91

Pearson Correlation.803** .824** .028 -.763** .030 .352** 1

Sig. (2-tailed) .000 .000 .789 .000 .779 .001

N 91 91 91 91 91 91 91

Pearson Correlation.827** .846** -.030 -.807** -.008 .278** .987** 1

Sig. (2-tailed) .000 .000 .780 .000 .937 .008 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.201 .206 .249* -.139 .124 .694** .674** .584** 1

Sig. (2-tailed) .057 .051 .017 .190 .243 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.111 .114 .161 -.098 .019 .626** .600** .573** .891**

Sig. (2-tailed) .296 .280 .128 .355 .860 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.161 -.142 .266* .141 -.026 .169 -.066 -.109 .062 .808**

Sig. (2-tailed) .127 .178 .011 .184 .805 .109 .534 .305 .559 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.036 -.020 .419** .073 1.000** .163 .032 -.006 .125 .075

Sig. (2-tailed) .737 .850 .000 .490 .000 .123 .764 .956 .240 .482

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.199 -.231* -.549** .042 -.143 -.223* -.272** -.238* -.273** -.179 1

Sig. (2-tailed) .058 .028 .000 .691 .175 .033 .009 .023 .009 .089

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.104 .120 .553** .054 .181 .173 .172 .125 .239* .230* -.362**

Sig. (2-tailed) .326 .258 .000 .608 .087 .101 .102 .236 .022 .028 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.313** -.327** -.284** .234* -.023 .000 -.256* -.276** -.031 .042 .580**

Sig. (2-tailed) .002 .002 .006 .026 .827 .997 .014 .008 .770 .691 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.323** -.336** -.291** .238* -.035 -.008 -.266* -.284** -.041 .038 .588**

Sig. (2-tailed) .002 .001 .005 .023 .740 .943 .011 .006 .700 .720 .000

N 91 91 91 91 91 91 91 91 91 91 91

PL_EVCi

nN

EVCin_T

pinN

EVCin_T

SpinN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

SMSP_d

ECin

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

PL_TSpi

nN

Table 13: Correlation coefficients of directed network  
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Tables 13 show that nodes (Nodes) and ties (Edges_ud) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d) and Reciprocity. Total Paths (Tpaths_d) in the network 

share a negative correlation with Density (Den_d). Total Shortest Paths (TSpaths_d) in 

the network correlate positively with the number of nodes (Nodes) and ties (Edges_ud). 

Total Shortest Paths (TSpaths_d) in the network share a negative correlation with 

Density (Den_d). Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power Law Distribution 

per Node (PL_TSpinN) correlates positively with Paths Power Law Distribution per Node 

(PL_TpinN). Small World Metric (S_con) is strongly correlated with Clustering Coefficient 

(CC_d). Eigenvector Centralization (ECin) correlates negatively with Reciprocity. Power 

Law Distribution of Eigenvector Centrality per Node (PL_EVCinN) shares a positive 

correlation with Reciprocity. Eigenvector Centrality with respect to Total Shortest Paths 

per Node (EVCin_TSPinN) and Eigenvector Centrality with respect to Total Paths per 

Node (EVCin_TPinN) correlate strongly with Eigenvector Centralization (ECin). 

  



www.manaraa.com

376 
 

 

A.3.7.3.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.3.7.3.2.1 Independent Variables 

 

 

The factor analysis generated two factors that explain 84.315% (greater than 

80%) of the cumulative variance. Both factors have eigenvalues above one. Nodes and 

ties (Edges_d) have significant factor loadings in factor 1. Density (Den_d) had a 

negative loading in factor 1, hence it was removed. Clustering Coefficient (CC_d) and 

Reciprocity have a significant loading in factor 2.Cronbach’s alpha for factor1 has a value 

of 0.994. This means nodes and ties are measuring same construct within factor 1. 

Hence, I name factor 1 as “Size”. Cronbach’s alpha for factor2 has a value of 0.32. This 

means Clustering Coefficient (CC_d) and Reciprocity are not measuring same construct 

within factor2. 

Figure 21: Factor Analysis of Independent Variables  
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A.3.7.3.2.2 Network Structure (MV1) 

 

 

 

Factor analysis generated three factors that explain 84.534% (greater than 80%) 

of cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 has 

eigenvalue little less than 1. Assortativity (R_con) and Scale Free Metric (S_con) have 

significant factor loadings in factor 2. Cronbach’s alpha for factor2 has a value of 0.1. 

Assortativity (R_con) and Scale Free Metric (S_con) are not measuring same construct 

within factor 2. Hence, they should not be considered as a factor. Paths Power Law 

Distribution per Node (PL_TpinN) and Shortest Paths Power Law Distribution per Node 

(PL_TpinN) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.893. Paths Power Law Distribution per Node (PL_TpinN) and Shortest Paths 

Power Law Distribution per Node (PL_TpinN) are measuring same construct within 

factor 1. Hence, they should be considered as a factor. All other variables load 

independently. Factor 1 is named as “Distribution”. 

Figure 22: Factor Analysis of Network Structure Variables  
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A.3.7.3.2.3 Network Flow (MV2) 

 

 

Factor analysis generated three factors that explain 97.83% (greater than 80%) 

of cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 has 

eigenvalue little less than 1. Average Path Length (AvgPL_d) and Average Geodesic 

Length (AvgGL_d) have significant factor loadings in factor 2. Cronbach’s alpha for 

factor2 has a value of 0.916. Average Path Length (AvgPL_d) and Average Geodesic 

Length (AvgGL_d) are measuring the same construct within factor2. Factor2 is named as 

“Spread and Speed Boundary”. Total Paths (Tpaths_d), Total Shortest Paths (Tpaths_d) 

have significant factor loadings on factor1. Cronbach’s alpha for factor2 has a value of 

0.991. Total Paths (Tpaths_d), Total Shortest Paths (Tpaths_d) are measuring the same 

construct within factor1. Factor1 is named as “Spread and Speed”. 

  

Figure 23: Factor Analysis of Network Flow Variables  
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A.3.7.3.2.4 Dependent Variables 

 

 

Factor analysis generated two factors that explain 88.821% (greater than 80%) of 

cumulative variance. Eigenvector Centralization (ECin), Eigenvector Centralities with 

respect to Paths (EVCin_TpinN) and Shortest Paths (EVCin_TSpinN) have significant 

factor loading on factor 1. Factor 1 has a Cronbach’s alpha of 0.880. I name factor1 as 

“Influence” as both, Eigenvector Centralities with respect to Paths (EVCin_TpinN) and 

Shortest Paths (EVCin_TSpinN), are being used measure of influence.  

  

Figure 24: Factor Analysis of Dependent Variables  
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A.3.7.3.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Comedy.pdf”. 

A.3.7.3.3.1 Impact of Network Structure on Network Flow 

 

 

 

 

Table 14 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 21%, 9.5%, 23%, and 28.1% 

variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Average Path Length 

(AvgPL_d) and Average Geodesic Length (AvgGL_ud), respectively.   

Table 14:  Impact of Network Structure on Network Flow  
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A.3.7.3.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 15 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 15.7% and 10% variation in 

the S_con and R_con, respectively. The impact of network flow variables on R_con is not 

taken into consideration, as the p-values are greater than the Bonferroni-adjusted p-

value of 0.000694.  

Table 15: Impact of Network Flow on Network Structure 
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A.3.7.3.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 16 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCinN), explaining 12.4% and 14.5% variation respectively. 

A.3.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

Table 17 shows that the network structure variables do not impact network 

phenomenon variables as their respective p-values are greater than the Bonferroni-

adjusted p-value of 0.000694. 

. 

Table 16: Impact of Network Structure on Network Phenomenon 

 

Table 17: Impact of Network Flow on Network Phenomenon 
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A.3.7.3.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

 

Table 18 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (ECin), Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCinN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCin_TSpinN), explaining 40.9%, 32.5%, 18.8% and 20% 

variation respectively.  

 

  

Table 18: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.3.7.4 The Propagation Network 

A.3.7.4.1 Correlation Analysis 

Significant correlations coefficients for propagation network are shown below in 

table 19. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d AvgGL_d

PL_Tpou

tN S_pro ECout

EVCout_

TpoutN

Pearson Correlation.990** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.849** -.838** .209* 1

Sig. (2-tailed) .000 .000 .047

N 91 91 91 91

Pearson Correlation.803** .824** .028 -.763** .030 .352** 1

Sig. (2-tailed) .000 .000 .789 .000 .779 .001

N 91 91 91 91 91 91 91

Pearson Correlation.827** .846** -.030 -.807** -.008 .278** .987** 1

Sig. (2-tailed) .000 .000 .780 .000 .937 .008 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.201 .206 .249* -.139 .124 .694** .674** .584** 1

Sig. (2-tailed) .057 .051 .017 .190 .243 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.111 .114 .161 -.098 .019 .626** .600** .573** .891** 1

Sig. (2-tailed) .296 .280 .128 .355 .860 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.053 .072 .006 -.169 .081 .261* .202 .207* .162 .189 .559**

Sig. (2-tailed) .616 .500 .958 .109 .445 .013 .054 .049 .124 .072 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.199 -.182 .219* .086 .071 .493** .211* .196 .499** .615** .379** .636**

Sig. (2-tailed) .058 .085 .037 .419 .504 .000 .045 .062 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.036 -.020 .419** .073 1.000** .163 .032 -.006 .125 .021 .028 .008

Sig. (2-tailed) .737 .850 .000 .490 .000 .123 .764 .956 .240 .844 .791 .940

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.199 -.231* -.549** .042 -.143 -.223* -.272** -.238* -.273** -.202 -.154 .017 1

Sig. (2-tailed) .058 .028 .000 .691 .175 .033 .009 .023 .009 .055 .146 .873

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.182 .221* .623** -.054 .112 .346** .313** .280** .313** .275** .026 .074 -.678**

Sig. (2-tailed) .084 .035 .000 .614 .291 .001 .003 .007 .003 .008 .808 .488 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.320** .296** -.090 -.287** -.053 -.071 .280** .274** .123 .049 -.103 -.124 -.026 .989**

Sig. (2-tailed) .002 .004 .396 .006 .620 .503 .007 .009 .245 .643 .330 .241 .807 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91

PL_EVC

outN

EVCout_

TSpoutN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PL_TSp

outN

R_pro

SMSP_d

ECout

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

Correlations

Edges_d

Den_d

Table 19: Correlation coefficients of directed network  
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Table 19 shows that nodes (Nodes) and ties (Edges_ud) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d) and Reciprocity. Total Paths (Tpaths_d) in the network 

share a negative correlation with Density (Den_d). Total Shortest Paths (TSpaths_d) in 

the network correlate positively with the number of nodes (Nodes) and ties (Edges_ud). 

Total Shortest Paths (TSpaths_d) in the network share a negative correlation with 

Density (Den_d). Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power Law Distribution 

per Node (PL_TSpoutN) correlates positively with Paths Power Law Distribution per 

Node (PL_TpoutN). Small World Metric (SMSP_d) is strongly correlated with Clustering 

Coefficient (CC_d). Eigenvector Centralization (ECout) correlates negatively with 

Reciprocity. Power Law Distribution of Eigenvector Centrality per Node (PL_EVCoutN) 

shares a positive correlation with Reciprocity. Eigenvector Centrality with respect to 

Total Shortest Paths per Node (EVCout_TSPoutN) and Eigenvector Centrality with 

respect to Total Paths per Node (EVCoutN_TPoutN) correlate strongly with Eigenvector 

Centralization (ECout). 
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A.3.7.4.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.3.7.4.2.1 Independent Variables 

 

 

The factor analysis generated two factors that explain 84.315% (greater than 

80%) of the cumulative variance. Both factors have eigenvalues above one. Nodes and 

ties (Edges_d) have significant factor loadings in factor 1. Density (Den_d) had a 

negative loading in factor 1, hence it was removed. Reciprocity and Clustering 

Coefficient (CC_d) have a significant loading in factor 2.Cronbach’s alpha for factor1 has 

a value of 0.995. This means nodes and ties are measuring same construct within factor 

1. Hence, I name factor 1 as “Size”. Cronbach’s alpha for factor2 has a value of 0.32. This 

means Reciprocity and Clustering Coefficient (CC_d) are not measuring same construct 

within factor 2. 

Figure 25: Factor Analysis of Independent Variables  
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A.3.7.4.2.2 Network Structure (MV1) 

 

 

 

Factor analysis generated three factors that explain 85.531% (greater than 80%) 

of cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 has 

eigenvalue little less than 1. Assortativity (R_pro) and Scale Free Metric (S_pro) have 

significant factor loadings in factor 2. Cronbach’s alpha for factor2 has a value of 0203. 

Assortativity (R_pro) and Scale Free Metric (S_pro) are not measuring same construct 

within factor 2. Hence, they should not be considered as a factor. Power Law 

Distribution of Paths per Node (PL_TpoutN) and Power Law Distribution of Shortest 

Paths per Node (PL_TSpoutN) have significant factor loadings in factor 1. Cronbach’s 

alpha for factor1 has a value of 0.714. Power Law Distribution of Paths per Node 

(PL_TpoutN) and Power Law Distribution of Shortest Paths per Node (PL_TSpoutN) are 

measuring same construct within factor 1. Hence, they should be considered as a factor. 

All other variables load independently. Factor 1 is named as “Distribution”. 

Figure 26: Factor Analysis of Independent Variables  
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A.3.7.4.2.3 Network Flow (MV2) 

 

 

 

Factor analysis generated two factors that explain 91.049% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Graph Diameter 

(GD_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) have 

significant factor loadings in factor 1. Cronbach’s alpha for factor2 has a value of 0.813. 

Graph Diameter (GD_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) are measuring the same construct within factor1. Factor1 is named as 

“Spread and Speed Boundary”. Total Paths (Tpaths_d) and Total Shortest Paths 

(TSpaths_d) have significant factor loadings on factor2. Cronbach’s alpha for factor2 has 

a value of 0.991. Total Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d) are 

measuring the same construct within factor2. Factor2 is named as “Spread and Speed”. 

  

Figure 27: Factor Analysis of Network Flow Variables  
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A.3.7.4.2.4 Dependent Variables 

 

 

 

Factor analysis generated two factors that explain 91.683% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCout_TpoutN) 

and Shortest Paths (EVCout_TSpoutN) have significant factor loading on factor 1. Factor 

1 has a Cronbach’s alpha of 0.995. I name factor1 as “Influence” as both Eigenvector 

Centralities with respect to Paths (EVCout_TpoutN) and Shortest Paths 

(EVCout_TSpoutN), are being used measure of influence.  

  

Figure 28: Factor Analysis of Dependent Variables  
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A.3.7.4.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Comedy.pdf”. 

A.3.7.4.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 19 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 24%, 3.4%, 3.5%, 24% and 

41.6% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest Paths 

(TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_ud), 

respectively. The impact of network structure variables on Total Paths (Tpaths_d) and 

Total Shortest Paths (TSpaths_d) are not taken into consideration, as the p-value is 

greater than the Bonferroni-adjusted p-value of 0.000694. 

 

Table 20:  Impact of Network Structure on Network Flow  
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A.3.7.4.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 21 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 5%, 5.8%, 11.4%, and 38.6% 

variation in the PL_TpoutN, PL_TSpoutN, S_pro, and R_pro, respectively. The impact of 

network flow variables on PL_TpoutN, PL_TSpoutN and S_pro, are not taken into 

consideration, as the p-values are greater than the Bonferroni-adjusted p-value of 

0.000694. 

A.3.7.4.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 21: Impact of Network Flow on Network Structure 

 

Table 22: Impact of Network Structure on Network Phenomenon 
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Table 22 shows that the network structure variables do not impact network 

phenomenon variables as their respective p-values are greater than the Bonferroni-

adjusted p-value of 0.000694. 

A.3.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 23 shows that the network structure variable impacts Eigenvector 

Centralization (ECout), Powel Law Distribution of Eigenvector Centrality with respect to 

Nodes (PL_EVCoutN), Eigenvector Centrality with respect to Total Paths per Node 

(EVCout_TpoutN) and Eigenvector Centrality with respect to Total Shortest Paths per 

Node (EVCout_TSpoutN), explaining 6.4%, 14.2%, 5.8% and 11.9% variation respectively. 

The impact of network flow variables on EC_out, EVCout_TpoutN and EVCout_TSpoutN 

are not taken into consideration, as their respective p-values are greater than the 

Bonferroni-adjusted p-value of 0.000694. 

 

 

Table 23: Impact of Network Flow on Network Phenomenon 
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A.3.7.4.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 24 shows the collective impact of independent and moderating 

variables on the network phenomenon variables. The independent variables and the 

moderating variables collectively impact Eigenvector Centralization (EC_out), 

Power Law Distribution of Eigenvector Centrality per Node (PL_EVCoutN), 

Eigenvector Centrality with respect to Total Paths per Node (EVCout_TpoutN) and 

Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCout_TSpoutN), explaining 32.8%, 48.7%, 31.6%and 35.8% variation 

respectively.  

  

Table 24: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.4 Case 4 --Sports 

A.4.1 Case Overview 

Data for keyword “YouTube + sports” was collected over a period of 91 days 

(31/12/2013 to 31/03/2014). As shown in table 9, overall 129,182 tweets were 

collected, out of which 67,476 were broadcast tweets and 61,706 were engaged tweets 

respectively. Out of 61,706 engaged tweets only 32,778 tweets formed the largest 

community. Similarly, 77,617 daily unique people tweeted overall, out of which 25,776 

daily unique people were engaged in broadcast activity whereas 51,841 daily unique 

people were engaged in conversations. Out of 51,841 daily unique people only 29,998 

daily unique people formed the largest community.  Data for the largest community was 

analyzed at a daily interval. The overall trends for the sports data are shown below in 

figure 1 and figure 2.  

 

 

 

 

 

Figure 1: Overall Tweets 
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Figure 1 and figure 2 shows that both the total tweets and total people involved 

are very dynamic and their magnitude changes on a daily basis. The maximum of the 

total number of daily tweets and the maximum of the total number of daily unique 

people observed on a single day (the daily uniques) are 8,562 and 8,624, respectively. 

Similarly, the minimum of the total number daily tweets and the minimum of the 

number daily unique are 333 and 360, respectively.  The size of the largest community 

on a particular day and the largest number of community tweets on that day also seem 

to follow the trend of total people and total tweets. The largest number of daily 

community tweets and the largest number of daily unique people are 7,881 and 7,882, 

respectively.   Similarly, the smallest number of daily community tweets and the 

smallest number of daily unique people are 108 and 108, respectively. As the total 

number of daily unique people tweeting increases, so does the size of the community. 

Most of the engaged people are engaged in the collective conversation forming the 

largest community. 

Fig.2: Overall People 
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A.4.2 Random or Not Random 

As explained in section 4.4.1, in order to eliminate α- error and β- error, I 

compare the clustering coefficients of both undirected (CC_ud) and directed networks 

(CC_d) with their corresponding random (Erdös-Rényi, E-R) networks (CCudran, CCdran). 

If the clustering coefficients of the undirected and directed networks are equal to those 

of the E-R random network, then the directed and undirected networks are considered 

to be random, if they are not equal, then they are not random.  

 

 

 

 

 

As seen in figure 3 and figure 4 Clustering Coefficients of the undirected 

networks (CC_ud) follows a very different pattern from their corresponding E-R 

Figure 3: Comparison of Clustering Coefficients of Undirected Network with E-R Networks 

Figure 4: Comparison of Clustering Coefficients of Directed Network with E-R Networks 
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networks. Therefore, the undirected network is considered to be non-random networks 

and the variables computed are a true reflection of network’s features. For the direct 

network the Clustering Coefficients (CC_d) is zero for the most part. Therefore, the 

directed networks are random. 

A.4.3. Independent Variables 

The values of the independent variables for both the undirected and the directed 

network are shown in figure 5 below. 

 

 

Figure 5 (a) shows that the number of directed ties (Edges_d) in the network and 

the total number of nodes (Nodes) overlap with each other. The numbers of undirected 

Figure 5: Independent Variables--(a) Nodes and Edges (Undirected and Directed networks), (b) 

Reciprocity (Directed Networks), (c) Density (Undirected and Directed Networks), (d) Clustering 

Coefficient Undirected Network, (e) Clustering Coefficient Directed Network. 



www.manaraa.com

398 
 

 

ties (Edges_ud) is greater than the number of directed ties (Edges_d), because in an 

undirected network every directed tie is considered to be symmetric. Therefore it is 

counted twice, except for the ones that are symmetric in a directed network. 

Reciprocity in Figure 5(b) indicates the presence of symmetric ties in a directed network 

(in an undirected network 100% are symmetric). The value of 0.01 is equal to 1% of all 

the ties. Figure 5(c) shows the difference between the densities of the undirected 

(Den_ud) and the directed networks (Den_d). The undirected network is denser than 

the directed network (Den_ud>Den_d). Figure 5(d) shows that the directed networks 

have higher Clustering Coefficients than the undirected networks (CC_d >CC_ud). 
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A.4.4 Network Structure Variables (MV1) 

A.4.4.1 The Scale Free Metric 

 

 

 

Figure 6 shows the Scale Free Metric for the undirected, directed, consumption and 

propagation networks (S_ud, S_d, S_con, S_pro). The Scale Free Metrics for the undirected 

(S_ud) and the directed network (S_d) are similar, but the Scale Free Metrics for the 

consumption (S_con) and propagation (S_pro) networks are very different. The propagation 

(S_pro) network is more scale free than the consumption network (S_con). The values of 

the scale free metric ranges between 0 and 1. When the values are closer to 1, it means 

that the networks are more scale free. Neither the directed nor the undirected network 

Figure 6: Scale Free Metric--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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is scale free. This means that these networks may have hubs in them. However, there is 

not just one hub that is the center of the community. As shown in figure 6 (c) and figure 

6 (d) the consumption network and the propagation network are scale free in some 

instances. 

A.4.4.2 The Assortativity 

 

 

 

Figure 7 shows the assortativity metric for the undirected, directed, 

consumption and propagation networks (R_ud, R_d, R_con, R_Pro). The value of the 

assortativity metric ranges between -1 and 1. When the values are closer to -1, it means 

that networks are disassortative. The undirected network is more Disassortative than 

Figure 7: Assortativity--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 



www.manaraa.com

401 
 

 

the directed network (R_d > R_ud). Among the directed networks, the consumption 

network is more Disassortative than the propagation network (R_pro > R_con). 

Disassortative means that the nodes in the network connect to nodes that are very 

similar to themselves. This is true more so in the undirected network and in the 

consumption network than it is in the directed network and the propagation network. 

This implies that disassortativeness of consumption contributes more to the 

disassortativeness of the directed network than the disassortativeness of the 

propagation does.  

A.4.4.3 The Small World Metric 

 

 

Figure 8 shows the Small World Metric for the undirected (SMSP_ud) and 

directed networks (SMSP_d). The Small World Metrics for the consumption and 

propagation networks are the same as the ones for the directed network. The directed 

networks don’t show any small world behavior. Contrary to the directed networks, 

undirected networks show some small world behavior but not significantly enough. This 

Figure 8: Small World Metric -- (a) Undirected Network, (b) Directed Network.  
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means that in undirected networks there are more nodes that act as hubs that facilitate 

communication between other nodes of the network. 

 

A.4.4.4 Paths and Shortest Paths Power law Distribution per Node 

 

 

 

Figure 9 (a) shows that, in the undirected network, paths are more uniformly 

distributed among nodes than shortest paths are distributed among nodes. This means 

that fewer nodes are responsible for more of the shortest paths in the undirected 

network. There are fewer instances of shortest path following power law distribution in 

undirected (figure 9 (a)) and consumption (figure 9 (c)) networks. In the directed (figure 

9 (b)) and propagation (figure 9 (d)) networks, there are no such patterns. 

 

Figure 9: Power Law Distribution of Paths and Shortest Paths in (a) Undirected Network, (b) 

Directed Network, (c) Consumption Network, (d) Propagation Network. 
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A.4.5 Network Flow Variables (MV2) 

 

 

 

Figure 10 (a), shows that total number of paths in the undirected network 

(Tpaths_ud) is orders of magnitude higher than the total number of shortest paths 

(TSpaths_ud). The total number of paths (Tpaths_d) and the total number of shortest 

paths (TSpaths_d) map more closely in the directed network. In figure 10 (b), a similar 

trend is observed in the Average Path Lengths (AvgPL_ud, AvgPL_d) and the Average 

Geodesic Lengths (AvgGL_ud, AvgGL_d) of the undirected and directed networks. In 

figure 10 (c), the Graph Diameter (GD_ud) of the undirected network is larger than the 

graph diameter of the directed network (GD_d). It is also noteworthy that, in figure 10 

Figure 10: Network Flow Variables-- (a) Total Paths and Total Shortest Paths, (b) 

Average Paths and Average Shortest Paths, (c) Undirected and Directed Network Graph 

Diameter. 
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(b) and in figure 10 (c), the Graph Diameter (GD_ud, GD_d) and the Average Path Length 

(AvgPL_ud, AvgPL_d) of the undirected and directed networks track pretty closely. 

A.4.6 Dependent Variables  

A.4.6.1 Eigenvector Centralization 

 

 

 

Figure 11 shows that nodes with influence are lot more central in the undirected 

(ECud) and propagation networks (ECout) than in the directed network (ECd). The 

consumption (ECin) and propagation (ECout) networks exhibit same level of 

centralization. 

  

Figure 11: Eigenvector Centralization in the Undirected, Directed, Consumption and 

Propagation Networks 
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A.4.6.2 Power law Distribution of Eigenvector Centrality per Node 

 

 

 

 

Figure 12 shows that in the undirected network eigenvector centrality values are 

consistently distributed in a power law distribution pattern (PL_EVCud), over a period of 

time. In the directed, the consumption and the propagation network the distribution of 

eigenvector centrality follows a power law distribution (PL_EVCd, PL_EVCin, PL_EVCout) 

pattern only sometimes. 

  

Figure 12: Power Law Distribution of Eigenvector Centrality in Undirected, Directed, 

Consumption and Propagation Network 
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A.4.6.3 Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node 

 

 

 

 

In figure 13, only those correlation coefficients with a significance value lower 

than 0.05 are shown. In figure 13 (a), there is a significant correlation between the 

eigenvector centrality of a node and the number of paths from a node in undirected 

network (EVCud_TpUDN). There is no significant correlation between eigenvector 

centrality of a node and shortest paths from a node in undirected network 

Figure 13: Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node--(a) Undirected Network, (b) Directed 

Network, (c) Consumption Network, (d) Propagation Network. 
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(EVCud_TSpUDN). In figure 13 (b), there is a significant correlation between the 

directed-eigenvector centrality of a node and the number of paths and shortest paths 

ending on a node in the directed network (EVCd_TpDN, EVCud_TSpUDN). In figure 13 

(c), there is a significant correlation between the in-eigenvector centrality of a node and 

the number of paths and shortest paths ending on a node in the consumption network 

(EVin_TpinN, EVCin_TSpinN). The correlation between the out-eigenvector centrality of 

a node and the number of shortest paths is less significant figure 13 (d) 

(EVCout_TpoutN, EVCout_TSpoutN). 
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A.4.7 Statistical Analysis 

A.4.7.1 The Undirected Network 

A.4.7.1.1 Correlation Analysis 

In Table 1, the statistically significant correlation coefficients for the undirected 

network are marked in yellow. All correlations between all variables are shown in 

supplemental file titled “Correlations.pdf”. 

 

Nodes

Edges_u

d Den_ud CC_ud GD_ud

Tpaths_

ud

AvgPL_u

d

AvgGL_u

d

PL_Tpud

N S_ud R_ud

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation.014 .036 -.410** .269** .950** 1

Sig. (2-tailed) .898 .733 .000 .010 .000

N 91 91 91 91 91 91

Pearson Correlation.728** .741** -.854** .010 .139 .399**

Sig. (2-tailed) .000 .000 .000 .927 .189 .000

N 91 91 91 91 91 91

Pearson Correlation-.174 -.155 -.186 .299** .999** .956** 1

Sig. (2-tailed) .098 .143 .077 .004 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation-.072 -.056 -.264* .170 .810** .787** .815** 1

Sig. (2-tailed) .500 .597 .011 .108 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation-.338** -.326** .635** .633** .296** .083 .294** .259* .270** 1

Sig. (2-tailed) .001 .002 .000 .000 .004 .433 .005 .013 .010

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.317** -.293** .232* .497** .693** .576** .693** .564** .427** .673** 1

Sig. (2-tailed) .002 .005 .027 .000 .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.081 -.047 .055 .969** .361** .353** .361** .216* .383** .580** .528**

Sig. (2-tailed) .448 .657 .605 .000 .000 .001 .000 .040 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.338** -.325** .227* .398** .419** .250* .380** .214* .614** .410** .503**

Sig. (2-tailed) .001 .002 .030 .000 .000 .017 .000 .042 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.017 -.020 .263* .009 -.261* -.273** -.262* -.508** -.152 -.052 -.101

Sig. (2-tailed) .877 .853 .012 .930 .013 .009 .012 .000 .152 .624 .339

N 91 91 91 91 91 91 91 91 91 91 91

EVCud_

TpudN

EVCud_

TSpudN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_ud

R_ud

SMSP_u

d

Tpaths_

ud

TSpaths

_ud

AvgPL_u

d

AvgGL_u

d

Correlations

Edges_u

d

Table 1: Correlation Coefficients of Undirected Network  
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In Table 1, the number of nodes (Nodes) and the number of ties (Edges_ud) have 

a strong positive correlation. As the number of nodes (Nodes) increases, the number of 

ties (Edges_ud) also increases. Total Paths (Tpaths_ud) have a strong positive 

correlation with Graph Diameter (GD_ud). The Total Number of Shortest Paths 

(TSpaths_ud) correlates strongly with the number of nodes (Nodes) and the number of 

ties (Edges_ud), but it correlates negatively with Density (Den_ud). Average Path Length 

(AvgPL_ud) and Average Geodesic Length (AvgGL_ud) share a strong positive correlation 

with Graph Diameter (GD_ud) and Total Paths (Tpaths_ud). Average geodesic length 

shares a strong correlation with average path length. Average Geodesic Length 

(AvgGL_ud) shares a strong correlation with Average Path Length (AvgPL_ud). Scale Free 

Metric (S_ud) shares a positive correlation with Density (Den_ud) and Clustering 

Coefficients (CC_ud). Assortativity (R_ud) shares positive correlations with Graph 

Diameter (GD_ud), Total Paths (Tpaths_ud), Average Path Length (AvgPL_ud), Average 

Geodesic Length (AvgGL_ud) and Scale Free Metric (S_ud). Small World (SMSP_ud) 

metric share a positive relationship with the Clustering Coefficients (CC_ud), Scale Free 

Metric (S_ud) and Assortativity (R_ud). Eigenvector Centrality with respect to Total 

Paths per Node (EVCud_TpudN) and correlate strongly Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCudN) and Assortativity (R_ud). Eigenvector 

Centrality with respect to Total Shortest Paths per Node (EVCud_TSpudN) correlates 

negatively with number of nodes.  
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A.4.7.1.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.4.7.1.2.1 Independent Variables 

 

 

 

The factor analysis generated three factors that explain 99.991% (greater than 

80%) of the cumulative variance. Factor1 and factor 2 have eigenvalues above 1. Factor3 

has eigenvalue below 1.  Nodes and ties (Edges_ud) have significant factor loadings in 

factor 1. Clustering Coefficient (CC_ud) has significant loading in factor 2. Density 

(Den_ud) has significant loading in factor 3.Cronbach’s alpha for factor 1has a value of 

0.998. This means nodes and ties are measuring same construct within factor 1 whereas 

Den_ud and CC_ud load independently on factor2 and factor 3. Hence, I name factor 1 

as “Size”. 

Figure 14: Factor Analysis Independent Variables Music Undirected Network  
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A.4.7.1.2.2 Network Structure (MV1) 

 

 

 

The factor analysis generated three factors that explain 85.823% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalue above 1. Factor2 and factor3 

have eigenvalues below 1. Scale Free Metric (S_ud), Assortativity (R_ud) and Small 

World Metric (SMSP_ud) have significant factor loadings in factor 1. Cronbach’s alpha 

for factor1 has a value of 0.473. Scale Free Metric (S_ud), Assortativity (R_ud) and Small 

World Metric (SMSP_ud) are measuring different constructs within factor 1. Hence, they 

should not be considered as a factor. All other variables load independently. 

  

Figure 15: Factor Analysis of Network Structure Variables  
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A.4.7.1.2.3 Network Flow (MV2) 

 

 

 

The factor analysis generated two factors that explain 94.436% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalues above 1. Factor2 has 

eigenvalue below 1. Graph Diameter (GD_ud), Total Paths (Tpaths_ud) Average Path 

Length (AvgPL_ud) and Average Geodesic Length (AvgGL_ud) have significant factor 

loadings in factor 1.  Cronbach’s alpha for factor1 has a value of 0.937. Hence, they 

should be considered as a factor.  

  

Figure 16: Factor Analysis of Network Flow Variables  
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A.4.7.1.2.4 Dependent Variables 

 

 

 

 

 

Factor analysis generated three factors that explain 81.011% (greater than 80%) 

of cumulative variance. All variables load independently. No significant factors were 

formed. 

  

Figure 17: Factor Analysis of Dependent Variables  
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A.4.7.1.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Sports.pdf”. 

A.4.7.1.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 2 shows that the network structure variables have a significant impact on 

the network flow variables. Network structure variables explain 52.2%, 53.4%, 46.2%, 

52.4% and 33.7% variation in Graph Diameter (GD_ud), Total Paths (Tpaths_ud), Total 

Shortest Paths (TSpaths_ud), Average Path Length (AvgPL_ud), and Average Geodesic 

Length (AvgGL_ud), respectively.   

Table 2: Impact of Network Structure on Network Flow  
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A.4.7.1.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 3 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 8.3%, 14.6%, 57.2%, 47.4% 

and 12% variation in the PL_TpudN, PL_TSpudN, S_ud, R_ud and SMSP_ud, respectively. 

   

Table 3: Impact of Network Flow on Network Structure 
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A.4.7.1.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 4 shows that the network structure variable Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN), 

Eigenvector Centrality with respect to Paths per Node (EVCud_TudN) and Eigenvector 

Centrality with respect to Total Paths per Node (EVCud_TpudN), explaining 13.3%, 3.2%, 

43.5% and 4.5% variation respectively. The impact of network flow variables on 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) and Power 

Law Distribution of Eigenvector Centrality per Node (PL_EVCudN) are not taken into 

consideration, as their respective p-values are greater than the Bonferroni-adjusted p-

value of 0.000694. 

  

Table 4: Impact of Network Structure on Network Phenomenon 
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A.4.7.1.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

Table 5 shows that the network flow variable impacts Eigenvector Centralization 

(EC_ud), Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) 

and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCud_TSpudN), explaining 5.4%, 16.7% and 53.9% variation respectively. The impact 

of network flow variables on Eigenvector Centralization (EC_ud) is not taken into 

consideration, as the p-value is greater than the Bonferroni-adjusted p-value of 

0.000694. 

  

Table 5: Impact of Network Flow on Network Phenomenon 

 



www.manaraa.com

418 
 

 

A.4.7.1.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

Table 6 shows the collective impact of independent and moderating variables on 

the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_ud), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCudN), Eigenvector Centrality with respect to 

Total Shortest Paths per Node (EVCud_TpudN) and Eigenvector Centrality with respect 

to Total Paths per Node (EVCud_TpudN), explaining 18.1%, 3.2%, 47.6 and 63.1% 

variation respectively. The collective impact of independent variables and the 

moderating variables on Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCudN) is not taken into consideration, as the p-values are greater than the 

Bonferroni-adjusted p-value of 0.000694. 

  

Table 6: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.4.7.2 The Directed Network 

A.4.7.2.1 Correlation Analysis 

Significant correlations coefficients for directed network are shown below in 

table 7. Significant correlations observed are marked in yellow. All correlations between 

all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d
TSpaths_

d AvgPL_d AvgGL_d PL_TpdN

PL_TSpd

N S_d

EVCd_Tpd

N

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.109 -.082 .540** -.181 .447** 1

Sig. (2-tailed) .302 .437 .000 .086 .000

N 91 91 91 91 91 91

Pearson Correlation.381** .404** .477** -.561** .563** .666** 1

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.511** .529** .303** -.719** .266* .488** .926** 1

Sig. (2-tailed) .000 .000 .004 .000 .011 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation-.022 .003 .585** -.179 .707** .846** .809** .565
** 1

Sig. (2-tailed) .833 .976 .000 .089 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.033 -.012 .544** -.264* .532** .790** .834** .708
**

.900
** 1

Sig. (2-tailed) .758 .909 .000 .011 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.347** -.337** .166 .200 -.008 .365** -.058 -.117 .141 .190 .702
** 1

Sig. (2-tailed) .001 .001 .116 .057 .944 .000 .584 .271 .181 .071 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.338** -.325** .297** .638** .328** .238* -.095 -.319
**

.244
* .106 .411

**
.431

** 1

Sig. (2-tailed) .001 .002 .004 .000 .002 .023 .372 .002 .020 .316 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.337** -.315** .282** .358** .196 .423** -.011 -.187 .261
* .133 .655

**
.622

**
.827

**

Sig. (2-tailed) .001 .002 .007 .000 .063 .000 .919 .076 .013 .209 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.004 .019 .401** -.057 .859** .444** .546** .292
**

.682
**

.509
** .053 .047 .412

**

Sig. (2-tailed) .972 .861 .000 .594 .000 .000 .000 .005 .000 .000 .617 .660 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.100 -.077 .659** -.090 .269** .648** .444** .313
**

.582
**

.544
**

.393
**

.347
**

.240
*

Sig. (2-tailed) .347 .471 .000 .397 .010 .000 .000 .003 .000 .000 .000 .001 .022

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.093 .087 -.174 .095 .108 -.150 .017 .003 -.027 -.075 -.214
*

-.344
** -.128 .968

**

Sig. (2-tailed) .382 .412 .098 .371 .306 .157 .873 .979 .796 .477 .041 .001 .227 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PL_TSp

dN

S_d

R_d

SMSP_d

TSpaths

_d

AvgPL_d

AvgGL_d

PL_EVC

dN

EVCd_T

SpdN

Correlations

Edges_d

GD_d

Tpaths_

d

Table 7: Correlation coefficients of directed network  

 



www.manaraa.com

420 
 

 

Table 7 shows that nodes (Nodes) and ties (Edges_d) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Graph 

Diameter (GD_d) correlates positively with Reciprocity. Total Paths (Tpaths_d) 

correlates positively with Clustering Coefficient (CC_d) and Graph Diameter (GD_d) but 

correlates negatively with Density (Den_d). Total Shortest Paths (TSpaths_d) in the 

network correlate positively with the number of nodes (Nodes) and ties (Edges_d). Total 

Shortest Paths (TSpaths_d) in the network share a negative correlation with Density 

(Den_d). Total Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d) correlate 

positively with each other. Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d), Reciprocity, Clustering Coefficient (CC_d), and with each 

other. Shortest Paths Power Law Distribution per Node (PL_TSpdN) correlates positively 

with Paths Power Law Distribution per Node (PL_TpdN). Scale Free Metric (S_d) seems 

to share a positive relationship with Density (Den_d).  Assortativity (R_d) shares a 

positive relationship with Shortest Paths Power Law Distribution per Node (PL_TSpdN), 

Paths Power Law Distribution per Node (PL_TpdN) and Scale Free Metric (S_d).  Small 

World Metric (SMSP_d) is strongly correlated with clustering coefficient and shares a 

positive relationship with Total Paths (Tpaths_d), Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d). Power Law Distribution of Eigenvector Centrality 

per Node (PL_EVCdN) shares a positive correlation with Reciprocity, Graph Diameter 

(GD_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d). 



www.manaraa.com

421 
 

 

Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCd_TSpdN) and 

Eigenvector Centrality with respect to Total Paths per Node (EVCd_TpdN) correlate 

strongly with each other. 

A.4.7.2.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.4.7.2.2.1 Independent Variables 

 

 

The factor analysis generated three factors that explain 89.976% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above one. 

Factor3 has eigenvalue below 1. Nodes and ties (Edges_d) have significant factor 

loadings in factor 1. Density (Den_d) has a significant factor loading in factor 3. 

Reciprocity and Clustering Coefficient (CC_d) have a significant loading in factor 

Figure 18: Factor Analysis of Independent Variables  
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2.Cronbach’s alpha for factor1 has a value of 0.997. This means Nodes and ties 

(Edges_d) are measuring same construct within factor 1. Hence, I name factor 1 as 

“Size”. Cronbach’s alpha for factor2 has a value of 0.342. This means reciprocity and 

clustering coefficient s are not measuring same construct within factor2. 

A.4.7.2.2.2 Network Structure (MV1) 

 

 

 

 

Factor analysis generated two factors that explain 81.215% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Paths Power Law 

Distribution per Node (PL_TpdN), Shortest Paths Power Law Distribution per Node 

(PL_TSpdN), Assortativity (R_d) and Scale Free Metric (S_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.704. . Paths Power Law 

Distribution per Node (PL_TpdN), Shortest Paths Power Law Distribution per Node 

Figure 19: Factor Analysis of Network Structure Variables  
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(PL_TSpdN), Assortativity (R_d) and Scale Free Metric (S_d) are measuring same 

construct within factor 1. Hence, they should be considered as a factor. All other 

variables load independently. 

A.4.7.2.2.3 Network Flow (MV2) 

 

 

 

 

 

Factor analysis generated one factor that explains 80.530% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (Tpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.875. Factor 1 is named as “Spread and Speed”. 

  

Figure 20: Factor Analysis of Network Flow Variables  
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A.4.7.2.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 85.206% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCd_TpD) and 

Shortest Paths (EVCd_TSpD) have significant factor loading on factor 1. Factor 1 has a 

Cronbach’s alpha of 0.978. I name the factor 1 as “Influence” as both Eigenvector 

Centralities with respect to Paths (EVCd_TpD) and Shortest Paths (EVCd_TSpD), are 

being used measure of influence.  

  

Figure 21: Factor Analysis of Dependent Variables  
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A.4.7.2.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Sports.pdf”.. 

A.4.7.2.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 8 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 31.2%, 33.6%, 30.3%, 42.6% 

and 25.6% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on Total Shortest 

Paths (TSpaths_d) is not taken into consideration, as the p-value is greater than the 

Bonferroni-adjusted p-value of 0.000694. 

 

Table 8:  Impact of Network Structure on Network Flow  
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A.4.7.2.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 9 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 35%, 28.1%, 47.2%, and 

38.6% variation in the PL_TpdN, PL_TSpdN, S_d, and R_ud, respectively.  

  

Table 9: Impact of Network Flow on Network Structure 
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A.4.7.2.3.3 Impact of Network Structure on Network Phenomenon 

 

 

Table 10 shows that the network structure variable impacts Power Law 

Distribution of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with 

respect to Total Shortest per Node (EVCd_TpdN) and Eigenvector Centrality with respect 

to Total Shortest Paths per Node (EVCd_TSpdN), explaining 21.1%, 7.7% and 10.8% 

variation respectively. The impact of network flow variables on Eigenvector Centrality 

with respect to Total Shortest per Node (EVCd_TpdN) and Eigenvector Centrality with 

respect to Total Shortest Paths per Node (EVCd_TSpdN) are not taken into 

consideration, as their respective p-values are greater than the Bonferroni-adjusted p-

value of 0.000694. 

  

Table 10: Impact of Network Structure on Network Phenomenon 
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A.4.7.2.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 11 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d), and Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN), explaining 22.9% and 41.3% variation respectively.  

 

 

 

 

 

 

 

 

 

 

Table 11: Impact of Network Flow on Network Phenomenon 
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A.4.7.2.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

 

Table 12 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_d), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 22.9%, 7.7%, 10.8%and 56.1% 

variation respectively. The collective impact of independent variables and the 

moderating variables on Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN) and Eigenvector Centrality with respect to Total Paths per Node 

Table 12: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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(EVCd_TpdN) are not taken into consideration, as their respective p-values are greater 

than the Bonferroni-adjusted p-value of 0.000694.   
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A.4.7.3 The Consumption Network 

A.4.7.3.1 Correlation Analysis 

Significant correlations coefficients for consumption network are shown below in 

table 13. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d AvgGL_d

PL_Tpin

N

PL_TSpi

nN S_con

EVCin_T

pinN

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.109 -.082 .540** -.181 .447** 1

Sig. (2-tailed) .302 .437 .000 .086 .000

N 91 91 91 91 91 91

Pearson Correlation.381** .404** .477** -.561** .563** .666** 1

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.511** .529** .303** -.719** .266* .488** .926** 1

Sig. (2-tailed) .000 .000 .004 .000 .011 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation-.022 .003 .585** -.179 .707** .846** .809** .565** 1

Sig. (2-tailed) .833 .976 .000 .089 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.033 -.012 .544** -.264* .532** .790** .834** .708** .900** 1

Sig. (2-tailed) .758 .909 .000 .011 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.302** -.294** .190 .101 .034 .361** .001 -.054 .161 .193 .779** 1

Sig. (2-tailed) .004 .005 .071 .342 .752 .000 .991 .610 .128 .066 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.053 -.058 .179 -.189 -.007 .098 .241* .311** .150 .361** .177 .185 .988**

Sig. (2-tailed) .616 .588 .089 .072 .949 .357 .021 .003 .157 .000 .094 .079 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.004 .019 .401** -.057 .859** .444** .546** .292** .682** .509** .057 .076 -.028

Sig. (2-tailed) .972 .861 .000 .594 .000 .000 .000 .005 .000 .000 .593 .475 .792

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.059 .046 -.526** .213* -.120 -.426** -.431** -.419** -.401** -.504** -.240* -.319** -.271**

Sig. (2-tailed) .580 .665 .000 .043 .257 .000 .000 .000 .000 .000 .022 .002 .009

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.084 -.066 .533** -.054 .183 .385** .284** .219* .308** .285** .246* .291** .108

Sig. (2-tailed) .431 .533 .000 .609 .082 .000 .006 .037 .003 .006 .019 .005 .309

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.262* -.262* -.122 .422** .044 -.066 -.256* -.338** -.081 -.161 .123 .110 -.039 .982**

Sig. (2-tailed) .012 .012 .251 .000 .677 .536 .014 .001 .447 .128 .246 .299 .716 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91
**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PL_TSpi

nN

R_con

SMSP_d

ECin

TSpaths

_d

AvgPL_d

AvgGL_d

PL_EVCi

nN

EVCin_T

SpinN

Correlations

Edges_d

GD_d

Tpaths_

d

Table 13: Correlation coefficients of directed network  
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Table 13 shows that nodes (Nodes) and ties (Edges_d) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Graph 

Diameter (GD_d) correlates positively with Reciprocity. Total Paths (Tpaths_d) 

correlates positively with Clustering Coefficient (CC_d) and Graph Diameter (GD_d) but 

correlates negatively with Density (Den_d). Total Shortest Paths (TSpaths_d) in the 

network correlate positively with the number of nodes (Nodes) and ties (Edges_d). Total 

Shortest Paths (TSpaths_d) in the network share a negative correlation with Density 

(Den_d). Total Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d) correlate 

positively with each other. Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d), Reciprocity, Clustering Coefficient (CC_d), and with each 

other. Shortest Paths Power Law Distribution per Node (PL_TSpinN) correlates positively 

with Paths Power Law Distribution per Node (PL_TpinN). Scale Free Metric (S_d) seems 

to share a positive relationship with Density (Den_d).  Assortativity (R_con) shares a 

positive relationship with Shortest Paths Power Law Distribution per Node (PL_TSpinN), 

Paths Power Law Distribution per Node (PL_TpinN) and Scale Free Metric (S_con).  Small 

World Metric (SMSP_d) is strongly correlated with clustering coefficient and shares a 

positive relationship with Total Paths (Tpaths_d), Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d). Power Law Distribution of Eigenvector Centrality 

per Node (PL_EVCinN) shares a positive correlation with Reciprocity, Graph Diameter 

(GD_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d). 
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Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCin_TSpinN) 

and Eigenvector Centrality with respect to Total Paths per Node (EVCin_TpinN) correlate 

strongly with each other. 
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A.4.7.3.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.4.7.3.2.1 Independent Variables 

 

 

The factor analysis generated three factors that explain 89.976% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above one. 

Factor3 has eigenvalue below 1. Nodes and ties (Edges_d) have significant factor 

loadings in factor 1. Density (Den_d) has a significant factor loading in factor 3. 

Reciprocity and Clustering Coefficient (CC_d) have a significant loading in factor 

2.Cronbach’s alpha for factor1 has a value of 0.997. This means Nodes and ties 

(Edges_d) are measuring same construct within factor 1. Hence, I name factor 1 as 

“Size”. Cronbach’s alpha for factor2 has a value of 0.342. This means reciprocity and 

clustering coefficient s are not measuring same construct within factor2. 

Figure 22: Factor Analysis of Network Structure Variables  
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A.4.7.3.2.2 Network Structure (MV1) 

 

 

 

 

Factor analysis generated three factors that explain 84.534% (greater than 80%) 

of cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 has 

eigenvalue little less than 1. Assortativity (R_con) and Scale Free Metric (SMSP_d) have 

significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.417. . 

Assortativity (R_con) and Scale Free Metric (SMSP_d) are not measuring same construct 

within factor 1. Hence, they should not be considered as a factor.  

PL_TpdN and PL_TSpdN have significant factor loadings in factor 2. Cronbach’s 

alpha for factor1 has a value of 0.893. PL_TpdN and PL_TSpdN are measuring same 

construct within factor 2. Hence, they should be considered as a factor. All other 

variables load independently. Factor2 is named as “Distribution”. 

Figure 23: Factor Analysis of Network Structure Variables  
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A.4.7.3.2.3 Network Flow (MV2) 

 

 

 

 

 

Factor analysis generated one factor that explains 80.530% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (Tpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.875. Factor 1 is named as “Spread and Speed”. 

  

Figure 24: Factor Analysis of Network Flow Variables  
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A.4.7.3.2.4 Dependent Variables 

 

 

 

 

 

Factor analysis generated two factors that explain 86.420% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCin_TpinN) and 

Shortest Paths (EVCin_TSpinN) have significant factor loading on factor 1. Factor 1 has a 

Cronbach’s alpha of 0.792. I name the factor1 as “Influence” as both, Eigenvector 

Centralities with respect to Paths (EVCin_TpinN) and Shortest Paths (EVCin_TSpinN), are 

being used measure of influence.  

  

Figure 25: Factor Analysis of Dependent Variables  
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A.4.7.3.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Sports.pdf”. 

A.4.7.3.3.1 Impact of Network Structure on Network Flow 

  

 

 

Table 14 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 28.7%, 26.7%, 16.2%, 45% 

and 32.7% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively.   

Table 14:  Impact of Network Structure on Network Flow  
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A.4.7.3.3.2 Impact of Network Flow on Network Structure 

 

 

 

 

Table 15 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 21.8%, 21.6%, 4.9% and 

10.2 % variation in the PL_TpinN, PL_TSpinN, S_con, and R_con, respectively. The impact 

of network flow variables on S_con is not taken into consideration, as the p-value is 

greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 15: Impact of Network Flow on Network Structure 
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A.4.7.3.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

 

Table 16 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in) and Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCinN), explaining 11.7% and 7.4% variation respectively. The impact of network 

flow variables on Eigenvector Centralization (EC_in) and Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCinN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 16: Impact of Network Structure on Network Phenomenon 
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A.4.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 17 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCinN), Eigenvector Centrality with respect to Total Paths per Node (EVCin_TpinN) 

and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCin_TSpinN), explaining 24.5%, 13.9%, 11.2 and 10.4% variation respectively. The 

impact of network flow variables on Eigenvector Centrality with respect to Total Paths 

per Node (EVCin_TpinN) and Eigenvector Centrality with respect to Total Shortest Paths 

per Node (EVCin_TSpinN) are not taken into consideration, as their respective p-values 

are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 17: Impact of Network Flow on Network Phenomenon 
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A.4.7.4.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

 

 

Table 18 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_in), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCinN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCin_TpinN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCin_TSpinN), explaining 41.1%, 30.6%, 14.4% and 16.9% 

variation respectively.  

  

Table 18: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.4.7.4 The Propagation Network 

A.4.7.4.1 Correlation Analysis 

Significant correlations coefficients for propagation network are shown below in 

table 19. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

Nodes Edges_d

Reciproc

ity Den_d CC_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d AvgGL_d

PL_Tpou

tN

PL_TSp

outN S_pro ECout

EVCout_

TpoutN

Pearson Correlation.999** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.109 -.082 .540** -.181 .447** 1

Sig. (2-tailed) .302 .437 .000 .086 .000

N 91 91 91 91 91 91

Pearson Correlation.381** .404** .477** -.561** .563** .666** 1

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.511** .529** .303** -.719** .266* .488** .926** 1

Sig. (2-tailed) .000 .000 .004 .000 .011 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation-.022 .003 .585** -.179 .707** .846** .809** .565** 1

Sig. (2-tailed) .833 .976 .000 .089 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.033 -.012 .544** -.264* .532** .790** .834** .708** .900** 1

Sig. (2-tailed) .758 .909 .000 .011 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.150 -.138 .164 .083 -.011 .212* .028 -.005 .091 .100 .686** 1

Sig. (2-tailed) .156 .194 .121 .434 .915 .044 .795 .963 .389 .345 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.086 -.069 .320** .290** .553** .464** .344** .127 .518** .452** .168 .175 1

Sig. (2-tailed) .416 .516 .002 .005 .000 .000 .001 .231 .000 .000 .111 .098

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.227* -.204 .371** .211* .456** .586** .307** .102 .504** .436** .422** .434** .784**

Sig. (2-tailed) .030 .053 .000 .045 .000 .000 .003 .334 .000 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.004 .019 .401** -.057 .859** .444** .546** .292** .682** .509** -.032 -.015 .307**

Sig. (2-tailed) .972 .861 .000 .594 .000 .000 .000 .005 .000 .000 .760 .887 .003

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.059 .046 -.526** .213* -.120 -.426** -.431** -.419** -.401** -.504** -.384** -.230* -.061 1

Sig. (2-tailed) .580 .665 .000 .043 .257 .000 .000 .000 .000 .000 .000 .028 .567

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.093 -.073 .498** -.103 .099 .479** .298** .252* .319** .340** .489** .257* .286** -.513**

Sig. (2-tailed) .380 .493 .000 .333 .348 .000 .004 .016 .002 .001 .000 .014 .006 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.293** .296** .085 -.345** .190 .204 .491** .515** .318** .372** -.074 -.132 .218* -.224* 1

Sig. (2-tailed) .005 .004 .424 .001 .072 .052 .000 .000 .002 .000 .484 .214 .038 .033

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.300** .305** .133 -.348** .192 .216* .530** .553** .345** .411** -.084 -.133 .239* -.218* .971**

Sig. (2-tailed) .004 .003 .207 .001 .069 .039 .000 .000 .001 .000 .427 .208 .023 .038 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

EVCout_

TSpoutN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

R_pro

SMSP_d

ECout

PL_EVC

outN

EVCout_

TpoutN

TSpaths

_d

AvgPL_d

AvgGL_d

PL_TSp

outN

S_pro

Correlations

Edges_d

GD_d

Tpaths_

d

Table 19: Correlation coefficients of directed network  
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Table 19 shows that nodes (Nodes) and ties (Edges_ud) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Graph 

Diameter (GD_d) correlates positively with Reciprocity. Total Paths (Tpaths_d) 

correlates positively with Clustering Coefficient (CC_d) and Graph Diameter (GD_d) but 

correlates negatively with Density (Den_d). Total Shortest Paths (TSpaths_d) in the 

network correlate positively with the number of (Nodes) and ties (Edges_ud). Total 

Shortest Paths (TSpaths_d) in the network share a negative correlation with Density 

(Den_d). Total Paths (Tpaths_d) and Total Shortest Paths (TSpaths_d) correlate 

positively with each other. Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d) and with each other.  Shortest Paths Power Law Distribution 

per Node (PL_TSpoutN) correlates positively with Paths Power Law Distribution per 

Node (PL_TpoutN). Scale Free Metric (S_pro) correlated with Density (Den_d) and 

average path length. Assortativity shares a positive relationship with graph diameter, 

Average Path Length (AvgPL_d) and Scale Free Metric (S_pro). Small World Metric 

(SMSP_d) is strongly correlated with Clustering Coefficient (CC_d), Total Paths 

(Tpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d). 

Power Law Distribution of Eigenvector Centrality per Node (PL_EVCoutN) correlated 

negatively with Eigenvector Centralization (ECout). Eigenvector Centrality with respect 

to Total Shortest Paths per Node (EVCout_TSPoutN) and Eigenvector Centrality with 
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respect to Total Paths per Node (EVCoutN_TPoutN) correlate strongly with each other 

and correlate positively with Total Shortest Paths (TSpaths_d). 

A.4.7.4.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.4.7.4.2.1 Independent Variables 

 

 

 

The factor analysis generated three factors that explain 89.976% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above one. 

Factor3 has eigenvalue below 1. Nodes and ties (Edges_d) have significant factor 

loadings in factor 1. Density (Den_d) has a significant factor loading in factor 3. 

Reciprocity and Clustering Coefficient (CC_d) have a significant loading in factor 

2.Cronbach’s alpha for factor1 has a value of 0.997. This means Nodes and ties 

Figure 26: Factor Analysis of Independent Variables  
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(Edges_d) are measuring same construct within factor 1. Hence, I name factor 1 as 

“Size”. Cronbach’s alpha for factor2 has a value of 0.342. This means reciprocity and 

clustering coefficient s are not measuring same construct within factor2. 

A.4.7.4.2.2 Network Structure (MV1) 

 

 

 

 

Factor analysis generated three factors that explain 90.405% (greater than 80%) 

of cumulative variance. Cronbach’s alpha for factor1 has a value of 0.250. Cronbach’s 

alpha for factor2 has a value of 0.527. Therefore, all variables load independently.  

  

Figure 27: Factor Analysis of Network Structure Variables  
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A.4.7.4.2.3 Network Flow (MV2) 

 

 

 

 

Factor analysis generated one factor that explains 80.530% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (Tpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.875. Factor 1 is named as “Spread and Speed”. 

  

Figure 28: Factor Analysis of Network Flow Variables  
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A.4.7.4.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 87.257% (greater than 80%) of 

cumulative variance Eigenvector Centralities with respect to Paths (EVCout_TpoutN) and 

Shortest Paths (EVCout_TSpoutN) have significant factor loading on factor 1. Factor 1 

has a Cronbach’s alpha of 0.526. Eigenvector Centralities with respect to Paths 

(EVCout_TpoutN) and Shortest Paths (EVCout_TSpoutN) are not measuring same 

construct within factor 1. 

 

 

  

Figure 29: Factor Analysis of Dependent Variables  
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A.4.7.4.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Sports.pdf”. 

A.4.7.4.3.1 Impact of Network Structure on Network Flow 

 

 

 

 

 

Table 20 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 36.9%, 20.5%, 7.5%, 44.9% 

and 34.2% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on Total Paths 

(Tpaths_d) and Total Shortest Paths (TSpaths_d) are not taken into consideration, as the 

p-value is greater than the Bonferroni-adjusted p-value of 0.000694. 

Table 20:  Impact of Network Structure on Network Flow  
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A.4.7.4.3.2 Impact of Network Flow on Network Structure 

 

 

 

 

Table 21 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 5.7%, 3.411.5%, and 35.4% 

variation in the PL_TpoutN, PL_TSpoutN, S_pro, and R_pro, respectively. The impact of 

network flow variables on PL_TpoutN, PL_TSpoutN and S_pro are not taken into 

consideration, as the p-values are greater than the Bonferroni-adjusted p-value of 

0.000694. 

  

Table 21: Impact of Network Flow on Network Structure 
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A.4.7.4.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

 

 

Table 22 shows that the network structure variable impacts Eigen Centralization 

(ECout) Powel Law Distribution of Eigenvector Centrality with respect to Nodes 

(PL_EVCoutN), Eigenvector Centrality with respect to Total Paths per Node 

(EVCout_TpoutN) and Eigenvector Centrality with respect to Total Shortest Paths per 

Node (EVCout_TSpoutN), explaining 13.8%, 29.2%, 3.7% and 4.6% variation respectively. 

The impact of network flow variables on Eigenvector Centrality with respect to Total 

Paths per Node (EVCout_TpoutN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCout_TSpoutN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

 

 

 

Table 22: Impact of Network Structure on Network Phenomenon 
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A.4.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

 

Table 23 shows that the network structure variable impacts Eigenvector 

Centralization (ECout), Powel Law Distribution of Eigenvector Centrality with respect to 

Nodes (PL_EVCoutN), Eigenvector Centrality with respect to Total Paths per Node 

(EVCout_TpoutN) and Eigenvector Centrality with respect to Total Shortest Paths per 

Node (EVCout_TSpoutN), explaining 24.5%, 22.1%, 25.6% and 29.8% variation 

respectively.   

Table 23: Impact of Network Flow on Network Phenomenon 
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A.4.7.4.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 24 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_out), Power Law 

Distribution of Eigenvector Centrality per Node (PL_EVCoutN), Eigenvector Centrality 

with respect to Total Paths per Node (EVCout_TpoutN) and Eigenvector Centrality with 

respect to Total Shortest Paths per Node (EVCout_TSpoutN), explaining 46.2%, 41.1%, 

25.6%and 29.8% variation respectively.  

 

 

Table 24: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.5 Case 5--Howto 

A.5.1 Case Overview 

Data for keyword “YouTube + howto” was collected over a period of 91 days 

(31/12/2013 to 31/03/2014). As shown in table 9, overall 10,856 tweets were collected, 

out of which 3,213 were broadcast tweets and 7,643 were engaged tweets respectively. 

Out of 7,643 engaged tweets only 4,299 tweets formed the largest community. 

Similarly, 10,557 daily unique people tweeted overall, out of which 4,802 daily unique 

people were engaged in broadcast activity whereas 6,475 daily unique people were 

engaged in conversations. Out of 6,475 daily unique people only 4,203 daily unique 

people formed the largest community.  Data for the largest community was analyzed at 

a daily interval. The overall trends for the data are shown below in figure 1 and figure 2. 

 

 

 

 

 

 

Figure 1: Overall Tweets 



www.manaraa.com

455 
 

 

 

 

 

Figure 1 and figure 2 show that both the total tweets and total people involved 

are very dynamic and their magnitude changes on a daily basis. The maximum of the 

total number of daily tweets and the maximum of the total number of daily unique 

people observed on a single day (the daily uniques) are 2,448 and 1,279, respectively. 

Similarly, the minimum of the total number daily tweets and the minimum of the 

number daily unique are 37 and 42, respectively.  The size of the largest community on a 

particular day and the largest number of community tweets on that day also seem to 

follow the trend of total people and total tweets. The largest number of daily 

community tweets and the largest number of daily unique people are 1,370 and 1,213, 

respectively.   Similarly, the smallest number of daily community tweets and the 

smallest number of daily unique people are 4 and 5, respectively. As the total number of 

daily unique people tweeting increases, so does the size of the community. Most of the 

engaged people are engaged in the collective conversation forming the largest 

community. 

Fig.2: Overall People 
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A.5.2 Random or Not Random 

As explained in section 4.4.1, in order to eliminate α- error and β- error, I 

compare the clustering coefficients of both undirected (CC_ud) and directed networks 

(CC_d) with their corresponding random (Erdös-Rényi, E-R) networks (CCudran, CCdran). 

If the clustering coefficients of the undirected and directed networks are equal to those 

of the E-R random network, then the directed and undirected networks are considered 

to be random, if they are not equal, then they are not random.  

 

 

 

As seen in figure 3 and figure 4 clustering coefficients of the undirected and 

directed networks are zero for the most part. Therefore, they are random networks. 

 

Figure 3: Comparison of Clustering Coefficients of Undirected Network with E-R Networks 

Figure 4: Comparison of Clustering Coefficients of Directed Network with E-R Networks 
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A.5.3. Independent Variables 

The values of the independent variables for both the undirected and the directed 

network are shown in figure 5 below. 

 

 

 

 

Figure 5: Independent Variables--(a) Nodes and Edges (Undirected and Directed networks), (b) 

Reciprocity (Directed Networks), (c) Density (Undirected and Directed Networks), (d) Clustering 

Coefficient Undirected Network, (e) Clustering Coefficient Directed Network. 
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Figure 5 (a) shows that the number of directed ties (Edges_d) in the network and 

the total number of nodes (Nodes) overlap with each other. The numbers of undirected 

ties (Edges_ud) is greater than the number of directed ties (Edges_d), because in an 

undirected network every directed tie is considered to be symmetric. Therefore it is 

counted twice, except for the ones that are symmetric in a directed network. 

Reciprocity in Figure 5(b) indicates the presence of symmetric ties in a directed network 

(in an undirected network 100% are symmetric). The value of 0.01 is equal to 1% of all 

the ties. Figure 5(c) shows the difference between the densities of the undirected 

(Den_ud) and the directed networks (Den_d). The undirected network is denser than 

the directed network (Den_ud>Den_d). Figure 5(d) shows that the directed networks 

have higher Clustering Coefficients than the undirected networks (CC_d >CC_ud). 
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A.5.4 Network Structure Variables (MV1) 

A.5.4.1 The Scale Free Metric 

 

 

 

Figure 6 shows the Scale Free Metric for the undirected, directed, consumption 

and propagation networks (S_ud, S_d, S_con, S_pro). The Scale Free Metrics for the 

undirected (S_ud) and the directed network (S_d) are similar, but the Scale Free Metrics 

for the consumption (S_con) and propagation (S_pro) networks are very different. The 

propagation (S_pro) network is more scale free than the consumption network (S_con). 

The values of the scale free metric ranges between 0 and 1. When the values are closer 

to 1, it means that the networks are more scale free. Neither the directed nor the 

Figure 6: Scale Free Metric--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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undirected network is scale free. This means that these networks may have hubs in 

them. However, there is not just one hub that is the center of the community. As shown 

in figure 6 (c) and figure 6 (d) the consumption network and the propagation network 

are scale free in some instances. 

A.5.4.2 The Assortativity 

 

 

 

Figure 7 shows the assortativity metric for the undirected, directed, consumption and 

propagation networks (R_ud, R_d, R_con, R_Pro). The value of the assortativity metric 

ranges between -1 and 1. When the values are closer to -1, it means that networks are 

disassortative. The undirected network is more Disassortative than the directed network 

Figure 7: Assortativity--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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(R_d > R_ud). Among the directed networks, the consumption network is more 

Disassortative than the propagation network (R_pro > R_con). Disassortative means that 

the nodes in the network connect to nodes that are very similar to themselves. This is 

true more so in the undirected network and in the consumption network than it is in the 

directed network and the propagation network. This implies that disassortativeness of 

consumption contributes more to the disassortativeness of the directed network than 

the disassortativeness of the propagation does.  

 

A.5.4.3 The Small World Metric 

 

 

 

Figure 8 shows the Small World Metric for the undirected (SMSP_ud) and 

directed networks (SMSP_d). The Small World Metrics for the consumption and 

propagation networks are the same as the ones for the directed network. The directed 

networks don’t show any small world behavior. Contrary to the directed networks, 

undirected networks show some small world behavior but not significantly enough. This 

Figure 8: Small World Metric -- (a) Undirected Network, (b) Directed Network.  
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means that in undirected networks there are more nodes that act as hubs that facilitate 

communication between other nodes of the network. 

A.5.4.4 Paths and Shortest Paths Power law Distribution per Node 

 

 

 

 

 

Figure 9 (a) shows that, in the undirected network, paths are more uniformly 

distributed among nodes than shortest paths are distributed among nodes. This means 

that fewer nodes are responsible for more of the shortest paths in the undirected 

network. There are fewer instances of shortest path following power law distribution in 

Figure 9: Power Law Distribution of Paths and Shortest Paths in (a) Undirected Network, (b) 

Directed Network, (c) Consumption Network, (d) Propagation Network. 
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undirected (figure 9 (a)) and consumption (figure 9 (c)) networks. In the directed (figure 

9 (b)) and propagation (figure 9 (d)) networks, there are no such patterns. 

A.5.5 Network Flow Variables (MV2) 

 

 

 

 

Figure 10 (a), shows that total number of paths in the undirected network 

(Tpaths_ud) is orders of magnitude higher than the total number of shortest paths 

(TSpaths_ud). The total number of paths (Tpaths_d) and the total number of shortest 

Figure 10: Network Flow Variables-- (a) Total Paths and Total Shortest Paths, (b) 

Average Paths and Average Shortest Paths, (c) Undirected and Directed Network Graph 

Diameter. 
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paths (TSpaths_d) map more closely in the directed network. In figure 10 (b), a similar 

trend is observed in the Average Path Lengths (AvgPL_ud, AvgPL_d) and the Average 

Geodesic Lengths (AvgGL_ud, AvgGL_d) of the undirected and directed networks. In 

figure 10 (c), the Graph Diameter (GD_ud) of the undirected network is larger than the 

graph diameter of the directed network (GD_d). It is also noteworthy that, in figure 10 

(b) and in figure 10 (c), the Graph Diameter (GD_ud, GD_d) and the Average Path Length 

(AvgPL_ud, AvgPL_d) of the undirected and directed networks track pretty closely. 

A.5.6 Dependent Variables  

A.5.6.1 Eigenvector Centralization 

 

 

 

Figure 11 shows that nodes with influence are lot more central in the undirected 

(ECud) and propagation networks (ECout) than in the directed network (ECd). The 

consumption (ECin) and propagation (ECout) networks exhibit same level of 

centralization. 

 

Figure 11: Eigenvector Centralization in the Undirected, Directed, Consumption and 

Propagation Networks 
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A.5.6.2 Power law Distribution of Eigenvector Centrality per Node 

 

 

 

Figure 12 shows that in the undirected network eigenvector centrality values are 

consistently distributed in a power law distribution pattern (PL_EVCud), over a period of 

time. In the directed, the consumption and the propagation network the distribution of 

eigenvector centrality follows a power law distribution (PL_EVCd, PL_EVCin, PL_EVCout) 

pattern only sometimes. 

 

 

 

 

 

 

Figure 12: Power Law Distribution of Eigenvector Centrality in Undirected, Directed, 

Consumption and Propagation Network 
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A.5.6.3 Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node 

 

 

 

 

In figure 13, only those correlation coefficients with a significance value lower 

than 0.05 are shown. In figure 13 (a), there is a significant correlation between the 

eigenvector centrality of a node and the number of paths from a node in undirected 

network (EVCud_TpUDN). There is no significant correlation between eigenvector 

Figure 13: Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node--(a) Undirected Network, (b) Directed 

Network, (c) Consumption Network, (d) Propagation Network. 
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centrality of a node and shortest paths from a node in undirected network 

(EVCud_TSpUDN). In figure 13 (b), there is a significant correlation between the 

directed-eigenvector centrality of a node and the number of paths and shortest paths 

ending on a node in the directed network (EVCd_TpDN, EVCud_TSpUDN). In figure 13 

(c), there is a significant correlation between the in-eigenvector centrality of a node and 

the number of paths and shortest paths ending on a node in the consumption network 

(EVin_TpinN, EVCin_TSpinN). The correlation between the out-eigenvector centrality of 

a node and the number of shortest paths is less significant figure 13 (d) 

(EVCout_TpoutN, EVCout_TSpoutN). 
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A.6 Case 6 --Science 

A.6.1 Case Overview 

Data for keyword “YouTube + science” was collected over a period of 91 days 

(31/12/2013 to 31/03/2014). As shown in table 9, overall 49,332 tweets were collected, 

out of which 13,462 were broadcast tweets and 35,870 were engaged tweets 

respectively. Out of 35,870 engaged tweets only 22,598 tweets formed the largest 

community. Similarly, 52,785 daily unique people tweeted overall, out of which 20,157 

daily unique people were engaged in broadcast activity whereas 32,628 daily unique 

people were engaged in conversations. Out of 32,628 daily unique people only 21,277 

daily unique people formed the largest community.  Data for the largest community was 

analyzed at a daily interval. The overall trends for the data are shown below in figure 1 

and figure 2. 

 

 

 

 

Figure 1: Overall Tweets 
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Figure 1 and figure 2 shows that both the total tweets and total people involved 

are very dynamic and their magnitude changes on a daily basis. The maximum of the 

total number of daily tweets and the maximum of the total number of daily unique 

people observed on a single day (the daily uniques) are 1,757 and 1,708, respectively. 

Similarly, the minimum of the total number daily tweets and the minimum of the 

number daily unique are 277 and 300, respectively.  The size of the largest community 

on a particular day and the largest number of community tweets on that day also seem 

to follow the trend of total people and total tweets. The largest number of daily 

community tweets and the largest number of daily unique people are 634 and 461, 

respectively.   Similarly, the smallest number of daily community tweets and the 

smallest number of daily unique people are 130 and 130, respectively. As the total 

number of daily unique people tweeting increases, so does the size of the community. 

Fig.2: Overall People 
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Most of the engaged people are engaged in the collective conversation forming the 

largest community. 

A.6.2 Random or Not Random 

 As explained in section 4.4.1, in order to eliminate α- error and β- error, I 

compare the clustering coefficients of both undirected (CC_ud) and directed networks 

(CC_d) with their corresponding random (Erdös-Rényi, E-R) networks (CCudran, CCdran). 

If the clustering coefficients of the undirected and directed networks are equal to those 

of the E-R random network, then the directed and undirected networks are considered 

to be random, if they are not equal, then they are not random.  

 

 

 

 

Figure 3: Comparison of Clustering Coefficients of Undirected Network with E-R Networks 

Figure 4: Comparison of Clustering Coefficients of Directed Network with E-R Networks 
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As seen in figure 3 and figure 4, Clustering Coefficients of the undirected 

networks (CC_ud) follows a very different pattern from their corresponding E-R 

networks. Therefore, the undirected network is considered to be non-random networks 

and the variables computed are a true reflection of network’s features. For the direct 

network the Clustering Coefficients (CC_d) is zero for the most part. Therefore, the 

directed networks are random. 

A.6.3. Independent Variables 

The values of the independent variables for both the undirected and the directed 

network are shown in Figure 5 below. 

 

 

Figure 5: Independent Variables--(a) Nodes and Edges (Undirected and Directed networks), (b) 

Reciprocity (Directed Networks), (c) Density (Undirected and Directed Networks), (d) Clustering 

Coefficient Undirected Network, (e) Clustering Coefficient Directed Network. 
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Figure 5 (a) shows that the number of directed ties (Edges_d) in the network and 

the total number of nodes (Nodes) overlap with each other. The numbers of undirected 

ties (Edges_ud) is greater than the number of directed ties (Edges_d), because in an 

undirected network every directed tie is considered to be symmetric. Therefore it is 

counted twice, except for the ones that are symmetric in a directed network. 

Reciprocity in Figure 5(b) indicates the presence of symmetric ties in a directed network 

(in an undirected network 100% are symmetric). The value of 0.01 is equal to 1% of all 

the ties. Figure 5(c) shows the difference between the densities of the undirected 

(Den_ud) and the directed networks (Den_d). The undirected network is denser than 

the directed network (Den_ud>Den_d).  
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A.6.4 Network Structure Variables (MV1) 

A.6.4.1 The Scale Free Metric 

 

 

 

Figure 6 shows the Scale Free Metric for the undirected, directed, consumption and 

propagation networks (S_ud, S_d, S_con, S_pro). The Scale Free Metrics for the undirected 

(S_ud) and the directed network (S_d) are similar, but the Scale Free Metrics for the 

consumption (S_con) and propagation (S_pro) networks are very different. The propagation 

(S_pro) network is more scale free than the consumption network (S_con). The values of the 

scale free metric ranges between 0 and 1. When the values are closer to 1, it means that the 

networks are more scale free. Neither the directed nor the undirected network is scale free. This 

Figure 6: Scale Free Metric--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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means that these networks may have hubs in them. However, there is not just one hub that is 

the center of the community. As shown in figure 6 (c) and figure 6 (d) the consumption network 

and the propagation network are scale free in some instances. 

 

A.6.4.2 The Assortativity 

 

 

 

 

  Figure 7 shows the assortativity metric for the undirected, directed, 

consumption and propagation networks (R_ud, R_d, R_con, R_Pro). The value of the 

assortativity metric ranges between -1 and 1. When the values are closer to -1, it means 

that networks are disassortative. The undirected network is more Disassortative than 

Figure 7: Assortativity--(a) Undirected Network, (b) Directed Network, (c) Consumption 

Network, (d) Propagation Network. 
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the directed network (R_d > R_ud). Among the directed networks, the consumption 

network is more Disassortative than the propagation network (R_pro > R_con). 

Disassortative means that the nodes in the network connect to nodes that are very 

similar to themselves. This is true more so in the undirected network and in the 

consumption network than it is in the directed network and the propagation network. 

This implies that disassortativeness of consumption contributes more to the 

disassortativeness of the directed network than the disassortativeness of the 

propagation does.  

A.6.4.3 The Small World Metric 

 

 

 

Figure 8 shows the Small World Metric for the undirected (SMSP_ud) and 

directed networks (SMSP_d). The Small World Metrics for the consumption and 

propagation networks are the same as the ones for the directed network. The directed 

networks don’t show any small world behavior. Contrary to the directed networks, 

undirected networks show some small world behavior.   

Figure 8: Small World Metric -- (a) Undirected Network, (b) Directed Network.  
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A.6.4.4 Paths and Shortest Paths Power law Distribution per Node 

 

 

 

 

Figure 9 (a) shows that, in the undirected network, paths are more uniformly 

distributed among nodes than shortest paths are distributed among nodes. This means 

that fewer nodes are responsible for more of the shortest paths in the undirected 

network. There are fewer instances of shortest path following power law distribution in 

undirected (figure 9 (a)) and consumption (figure 9 (c)) networks. In the directed (figure 

9 (b)) and propagation (figure 9 (d)) networks, there are no such patterns. 

 

 

Figure 9: Power Law Distribution of Paths and Shortest Paths in (a) Undirected Network, (b) 

Directed Network, (c) Consumption Network, (d) Propagation Network. 
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A.6.5 Network Flow Variables (MV2) 

 

 

 

 

Figure 10 (a), shows that total number of paths in the undirected network 

(Tpaths_ud) is orders of magnitude higher than the total number of shortest paths 

(TSpaths_ud). The total number of paths (Tpaths_d) and the total number of shortest 

Figure 10: Network Flow Variables-- (a) Total Paths and Total Shortest Paths, (b) 

Average Paths and Average Shortest Paths, (c) Undirected and Directed Network Graph 

Diameter. 
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paths (TSpaths_d) map more closely in the directed network. In figure 10 (b), a similar 

trend is observed in the Average Path Lengths (AvgPL_ud, AvgPL_d) and the Average 

Geodesic Lengths (AvgGL_ud, AvgGL_d) of the undirected and directed networks. In 

figure 10 (c), the Graph Diameter (GD_ud) of the undirected network is larger than the 

graph diameter of the directed network (GD_d). It is also noteworthy that, in figure 10 

(b) and in figure 10 (c), the Graph Diameter (GD_ud, GD_d) and the Average Path Length 

(AvgPL_ud, AvgPL_d) of the undirected and directed networks track pretty closely. 

A.6.6 Dependent Variables  

A.6.6.1 Eigenvector Centralization 

 

 

 

Figure 11 shows that nodes with influence are lot more central in the undirected 

(ECud) and propagation networks (ECout) than in the directed network (ECd). The 

consumption (ECin) and propagation (ECout) networks exhibit same level of 

centralization. 

Figure 11: Eigenvector Centralization in the Undirected, Directed, Consumption and 

Propagation Networks 
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A.6.6.2 Power law Distribution of Eigenvector Centrality per Node 

 

 

 

Figure 12 shows that in the undirected network eigenvector centrality values are 

consistently distributed in a power law distribution pattern (PL_EVCud), over a period of 

time. In the directed, the consumption and the propagation network the distribution of 

eigenvector centrality follows a power law distribution (PL_EVCd, PL_EVCin, PL_EVCout) 

pattern only sometimes. 

 

 

 

 

 

 

  

Figure 12: Power Law Distribution of Eigenvector Centrality in Undirected, Directed, 

Consumption and Propagation Network 
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A.6.6.3 Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node 

 

 

 

 

 

In figure 13, only those correlation coefficients with a significance value lower 

than 0.05 are shown. In figure 13 (a), there is a significant correlation between the 

eigenvector centrality of a node and the number of paths from a node in undirected 

Figure 13: Correlation Coefficient of Eigenvector Centrality vs. Total Paths per Node and 

Eigenvector Centrality vs. Total Shortest Paths per Node--(a) Undirected Network, (b) Directed 

Network, (c) Consumption Network, (d) Propagation Network. 
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network (EVCud_TpUDN). There is no significant correlation between eigenvector 

centrality of a node and shortest paths from a node in undirected network 

(EVCud_TSpUDN). In figure 13 (b), there is a significant correlation between the 

directed-eigenvector centrality of a node and the number of paths and shortest paths 

ending on a node in the directed network (EVCd_TpDN, EVCud_TSpUDN). In figure 13 

(c), there is a significant correlation between the in-eigenvector centrality of a node and 

the number of paths and shortest paths ending on a node in the consumption network 

(EVin_TpinN, EVCin_TSpinN). The correlation between the out-eigenvector centrality of 

a node and the number of shortest paths is less significant figure 13 (d) 

(EVCout_TpoutN, EVCout_TSpoutN). 
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A.6.7 Statistical Analysis 

A.6.7.1 The Undirected Network 

A.6.7.1.1 Correlation Analysis 

In Table 1, the statistically significant correlation coefficients for the undirected 

network are marked in yellow. All correlations between all variables are shown in 

supplemental file titled “Correlations.pdf”. 

 

 

Nodes

Edges_u

d Den_ud CC_ud GD_ud

Tpaths_

ud

TSpaths

_ud

AvgPL_u

d

AvgGL_u

d

PL_Tpud

N

Pearson Correlation.965** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.920** -.835** 1

Sig. (2-tailed) .000 .000

N 91 91 91

Pearson Correlation.505** .425** -.529** -.007 1

Sig. (2-tailed) .000 .000 .000 .951

N 91 91 91 91 91

Pearson Correlation.642** .565** -.658** -.012 .974** 1

Sig. (2-tailed) .000 .000 .000 .909 .000

N 91 91 91 91 91 91

Pearson Correlation.917** .959** -.828** -.053 .463** .583** 1

Sig. (2-tailed) .000 .000 .000 .619 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.505** .424** -.531** -.003 .997** .980** .461** 1

Sig. (2-tailed) .000 .000 .000 .974 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.434** .465** -.385** .022 .679** .660** .622** .682** 1

Sig. (2-tailed) .000 .000 .000 .833 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.695** -.633** .772** .252* -.125 -.284** -.573** -.121 .088 .037

Sig. (2-tailed) .000 .000 .000 .016 .237 .006 .000 .252 .407 .724

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.173 .222* -.216* .189 .508** .475** .318** .512** .631** -.087

Sig. (2-tailed) .100 .034 .040 .072 .000 .000 .002 .000 .000 .410

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.011 .059 .084 .982** .013 .023 -.002 .016 -.002 .002

Sig. (2-tailed) .921 .579 .429 .000 .906 .832 .989 .883 .986 .982

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.164 .170 -.126 .055 .341** .215* .198 .275** .232* .666**

Sig. (2-tailed) .120 .107 .235 .606 .001 .040 .059 .008 .027 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.101 -.033 .170 -.053 -.408** -.356** -.220* -.405** -.597** .056

Sig. (2-tailed) .339 .758 .106 .620 .000 .001 .036 .000 .000 .597

N 91 91 91 91 91 91 91 91 91 91

Correlations

Edges_u

d

Den_ud

GD_ud

Tpaths_

ud

TSpaths

_ud

AvgPL_u

d

AvgGL_u

d

EVCud_

TpudN

EVCud_

TSpudN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

S_ud

R_ud

SMSP_u

d

Table 1: Correlation Coefficients of Undirected Network  
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In Table 1, the number of nodes (Nodes) and the number of ties (Edges_ud) have 

a strong positive correlation. As the number of nodes (Nodes) increases, the number of 

ties (Edges_ud) also increases. The Density (Den_ud) of this network has a strong 

negative correlation with both the number of nodes (Nodes) and the number of ties 

(Edges_ud). Graph Diameter (GD_ud) correlates positively with number of nodes 

(Nodes) and negatively with Density (Den_ud). Total Paths (Tpaths_ud) and Total 

Shortest Paths (TSpaths_ud) share a positive correlation with the number of nodes 

(Nodes), number of ties (Edges_ud) and a negative correlation with Density (Den_ud). 

Average Path Length (AvgPL_ud) shares a strong positive correlation with number of 

nodes (Nodes), Graph Diameter (GD_ud) and Total Paths (Tpaths_ud). Average Path 

Length (AvgPL_ud) shares a negative relationship with Density (Den_ud). Average 

Geodesic Length (AvgGL_ud) shares a strong correlation with Graph Diameter (GD_ud), 

Total Paths (Tpaths_ud), Total Shortest Paths (TSpaths_ud) and Average Path Length 

(AvgPL_ud). Scale Free Metric (S_ud) shares a positive correlation with Density 

(Den_ud), and a negative relationship with number of nodes (Nodes), number of ties 

(Edges_ud) and Total Shortest Paths (TSpaths_ud). Assortativity (R_ud) shares positive 

correlations with Graph Diameter (GD_ud), Average Path Length (AvgPL_ud) and 

Average Geodesic Length (AvgGL_ud). Small World Metric (SMSP_ud) shares a positive 

correlation with Clustering Coefficient (CC_ud). Eigenvector Centrality with respect to 

Total Paths per Node (EVCud_TpudN) and correlate strongly Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCudN) and Assortativity (R_ud). Eigenvector 
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Centrality with respect to Total Shortest Paths per Node (EVCud_TSpudN) correlates 

negatively with Average Geodesic Length (AvgGL_ud). 

A.6.7.1.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.6.7.1.2.1 Independent Variables 

 

 

The factor analysis generated two factors that explain 95.8% (greater than 80%) of the 

cumulative variance. Factor1 and factor 2 have eigenvalues above 1. Nodes and ties 

(Edges_ud) have significant factor loadings in factor 1. Clustering Coefficient (CC_ud) has 

significant loading in factor 2. Cronbach’s alpha for factor 1has a value of 0.977. This means 

Nodes and ties (Edges_ud) are measuring same construct within factor 1. Hence, I name factor 1 

as “Size”. 

Figure 14: Factor Analysis Independent Variables Music Undirected Network  
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A.6.7.1.2.2 Network Structure (MV1) 

 

 

The factor analysis generated three factors that explain 90.217% (greater than 

80%) of the cumulative variance. Factor1 and factor2 have eigenvalues above 1. Factor3 

and factor4 have eigenvalues below 1. Power Law Distribution of Total Paths per Node 

(PL_TpudN) and Assortativity (R_ud) have significant factor loadings in factor 1. 

Cronbach’s alpha for factor1 has a value of 0.0.76. . Power Law Distribution of Total 

Paths per Node (PL_TpudN) and Assortativity (R_ud) are measuring different constructs 

within factor 1. Hence, they should not be considered as a factor. All other variables 

load independently. 

  

Figure 15: Factor Analysis of Network Structure Variables  
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A.6.7.1.2.3 Network Flow (MV2) 

 

 

The factor analysis generated two factors that explain 92.827% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalues above 1. Factor2 has 

eigenvalue below 1. Graph Diameter (GD_ud), Total Paths (Tpaths_ud), Average 

Geodesic Length (AvgGL_ud) and Average Path Length (AvgPL_ud) have significant 

factor loadings in factor 1.  Cronbach’s alpha for factor1 has a value of 0.912. Hence, 

they should be considered as a factor.  

  

Figure 16: Factor Analysis of Network Flow Variables  
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A.6.7.1.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated three factors that explain 84.327% (greater than 80%) 

of cumulative variance. All variables load independently. No significant factors were 

formed. 

  

Figure 17: Factor Analysis of Dependent Variables  
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A.6.7.1.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Sports.pdf”. 

A.6.7.1.3.1 Impact of Network Structure on Network Flow 

 

 

 

 

Table 2 shows that the network structure variables have a significant impact on 

the network flow variables. Network structure variables explain 30.7%, 37.9%, 53.9%, 

30.9% and 41.2% variation in Graph Diameter (GD_ud), Total Paths (Tpaths_ud), Total 

Shortest Paths (TSpaths_ud), Average Path Length (AvgPL_ud) and Average Geodesic 

Length (AvgGL_ud), respectively.  

  

Table 2: Impact of Network Structure on Network Flow  
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A.6.7.1.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 3 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 13.6%, 69.3%, and 39.2% 

variation in the PL_TpudN, S_ud and R_ud, respectively.  

  

Table 3: Impact of Network Flow on Network Structure 
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A.6.7.1.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 4 shows that the network flow variable impacts Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN), 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) and 

Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCud_TSpudN), 

explaining 4.3%, 16%, 53.1% and 6% variation respectively. The impact of network flow 

variables on Eigenvector Centralization (EC_ud) is not taken into consideration, as the p-

values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 4: Impact of Network Structure on Network Phenomenon 
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A.6.7.1.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 5 shows that the network flow variable impacts Eigenvector Centralization 

(EC_ud), Power Law Distribution of Eigenvector Centrality per Node (PL_EVCudN), 

Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpudN) and 

Eigenvector Centrality with respect to Total Shortest Paths per Node (EVCud_TSpudN), 

explaining 3.3%, 74%, 10.6 and 38% variation respectively. The impact of network flow 

variables on Eigenvector Centralization (EC_ud) and Eigenvector Centrality with respect 

to Total Paths per Node (EVCud_TpudN) is not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 5: Impact of Network Flow on Network Phenomenon 
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A.6.7.1.3.5 Collective Impact of Independent Variables, Moderating Variables (Network 

Structure and Network Flow Variables) on the Network Phenomenon Variables. 

 

Table 6 shows the collective impact of independent and moderating variables on 

the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_ud), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCudN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCud_TpudN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 19.2%, 70.9%, 59.5% and 45.8% 

variation respectively.  

 

  

Table 6: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.6.7.2 The Directed Network 

A.6.7.2.1 Correlation Analysis 

Significant correlations coefficients for directed network are shown below in 

table 7. Significant correlations observed are marked in yellow. All correlations between 

all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciprocit

y Den_d GD_d Tpaths_d

TSpaths_

d AvgPL_d PL_TpdN ECd

EVCd_Tpd

N

Pearson Correlation.965
** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.920
**

-.834
** -.070 1

Sig. (2-tailed) .000 .000 .510

N 91 91 91 91

Pearson Correlation.647
**

.609
** .075 -.576

**
.495

**
1.000

** 1

Sig. (2-tailed) .000 .000 .482 .000 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.363
**

.352
** .153 -.304

**
.604

**
.854

**
.852

** 1

Sig. (2-tailed) .000 .001 .147 .003 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.363
**

.348
** .137 -.308

**
.594

**
.856

**
.855

**
.998

**

Sig. (2-tailed) .000 .001 .196 .003 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.104 .093 .079 -.097 .347
** .109 .109 .169 .821

**

Sig. (2-tailed) .326 .383 .455 .358 .001 .303 .304 .109 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.695
**

-.632
** .028 .772

** -.066 -.446
**

-.449
** -.124 .055

Sig. (2-tailed) .000 .000 .790 .000 .536 .000 .000 .243 .604

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.029 .031 .119 .011 .222
* -.185 -.190 -.045 .320

**

Sig. (2-tailed) .786 .773 .262 .914 .035 .079 .071 .669 .002

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.399
**

.371
**

.633
**

-.343
**

.262
*

.394
**

.389
**

.383
**

.262
*

-.677
**

Sig. (2-tailed) .000 .000 .000 .001 .012 .000 .000 .000 .012 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.205 -.164 -.023 .233
*

-.434
**

-.445
**

-.447
**

-.447
**

-.219
* .079 1.000

**

Sig. (2-tailed) .052 .121 .830 .026 .000 .000 .000 .000 .037 .459 .000

N 91 91 91 91 91 91 91 91 91 91 91

Correlations

Edges_d

Den_d

PL_TSpd

N

S_d

R_d

TSpaths_

d

AvgPL_d

AvgGL_d

PL_EVCd

N

EVCd_TS

pdN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table 7: Correlation coefficients of directed network  
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Table 7 shows that nodes (Nodes) and ties (Edges_d) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Paths (Tpaths_d) in the network share a negative correlation with 

Density (Den_d). Total Shortest Paths (TSpaths_d) in the network correlate positively 

with the number of ties (Edges_d), Reciprocity and Total Paths (Tpaths_d) in the 

network. Total Shortest Paths (TSpaths_d) in the network share a negative correlation 

with Density (Den_d). Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power Law Distribution 

per Node (PL_TSpdN) correlates positively with Paths Power Law Distribution per Node 

(PL_TpdN). Scale Free Metric (S_d) seems to share a positive relationship with Density 

(Den_d) and Shortest Paths Power Law Distribution per Node (PL_TSpdN). Scale Free 

Metric (S_d) seems to share a negative relationship Total Paths (Tpaths_d) and Total 

Shortest Paths (TSpaths_d). Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN) shares a positive correlation with Reciprocity. Eigenvector Centrality with 

respect to Total Shortest Paths per Node (EVCd_TSpdN) and Eigenvector Centrality with 

respect to Total Paths per Node (EVCd_TpdN) correlate strongly with each other. 
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A.6.7.2.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.6.7.2.2.1 Independent Variables 

 

 

 

The factor analysis generated two factors that explain 96.903% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalues above one. Factor 2 has 

eigenvalue below 1. Reciprocity, Nodes and ties (Edges_d) have significant factor 

loadings in factor 1. Cronbach’s alpha for factor1 has a value of 0.072. This means 

Reciprocity, Nodes and ties (Edges_d) are not measuring same construct within factor 1.  

 

Figure 18: Factor Analysis of Independent Variables  
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A.6.7.2.2.2 Network Structure (MV1) 

 

 

 

 

Factor analysis generated one factor that explain 81.435% (greater than 80%) of 

cumulative variance. Factor1 has eigenvalues above 1. Power Law Distribution of Total 

Paths per Node (PL_TpdN), Power Law Distribution of Shortest Total Paths per Node 

(PL_TSpdN), Assortativity (R_d) and Scale Free Metric (S_d) have significant factor 

loadings in actor 1. Cronbach’s alpha for factor1 has a value of 0.872. Power Law 

Distribution of Total Paths per Node (PL_TpdN), Power Law Distribution of Shortest 

Total Paths per Node (PL_TSpdN), Assortativity (R_d) and Scale Free Metric (S_d) are 

measuring same construct within factor 1. Hence, they should be considered as a factor. 

All other variables load independently. 

 

  

Figure 19: Factor Analysis of Network Structure Variables  
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A.6.7.2.2.3 Network Flow (MV2) 

 

 

 

Factor analysis generated two factors that explains 95.345% (greater than 80%) 

of cumulative variance. Graph Diameter (GD_d), Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d) have significant factor loadings in factor 1. Total 

Paths (Tpaths_d), Total Shortest Paths (Tpaths_d) and Average Path Length (AvgPL_d) 

have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 

0.863. Factor 1 is named as “Spread and Speed Boundary”. Cronbach’s alpha for factor2 

has a value of 0.941. Factor 1 is named as “Spread and Speed”. 

 

  

Figure 20: Factor Analysis of Network Flow Variables  
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A.6.7.2.2.4 Dependent Variables 

 

 

 

Factor analysis generated two factors that explain 84.892% (greater than 80%) of 

cumulative variance. Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN), Eigenvector Centralities with respect to Paths (EVCd_TpD) and Shortest 

Paths (EVCd_TSpD) have significant factor loading on factor 1. Factor 1 has a Cronbach’s 

alpha of -3.16. Eigenvector centralization loads independently. 

  

Figure 21: Factor Analysis of Dependent Variables  
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A.6.7.2.3 Regression Analysis 

In this section, only the regressions in which the predictors had a significant 

impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Science.pdf”. 

A.6.7.2.3.1 Impact of Network Structure on Network Flow 

 

 

Table 8 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 13.9%, 19% and 19.3% 

variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), and Total Shortest Paths 

(TSpaths_d). 

 

 

 

Table 8:  Impact of Network Structure on Network Flow  
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A.6.7.2.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 9 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 13.9%, 11.1%, 19.3%, and 

14.9% variation in the PL_TpdN, PL_TSpdN, S_d, and R_ud, respectively. The impact of 

network flow variables on PL_TpdN is not taken into consideration, as the p-values is 

greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 9: Impact of Network Flow on Network Structure 
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A.6.7.2.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

Table 10 shows that the network structure variable impacts Power Law 

Distribution of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with 

respect to Total Paths per Node (EVCd_TpdN and Eigenvector Centrality with respect to 

Total Shortest Paths per Node (EVCd_TSpdN), explaining 5.8%, 5.6% and 5.6% variation 

respectively. The impact of network flow variables Power Law Distribution of 

Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCd_TSpdN) are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 10: Impact of Network Structure on Network Phenomenon 
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A.6.7.2.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 11 shows that the network structure variable impacts Eigenvector 

Centralization (EC_d), Power Law Distribution of Eigenvector Centrality per Node 

(PL_EVCdN), Eigenvector Centrality with respect to Total Paths per Node (EVCud_TpdN) 

and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCud_TSpdN), explaining 7.1%, 14.6%, 23.1% and 23.3% variation respectively. The 

impact of network flow variables Eigenvector Centralization (EC_d) is not taken into 

consideration, as the p-values is greater than the Bonferroni-adjusted p-value of 

0.000694. 

  

Table 11: Impact of Network Flow on Network Phenomenon 
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A.6.7.2.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

 

 

Table 12 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_d), Power Law Distribution 

of Eigenvector Centrality per Node (PL_EVCdN), Eigenvector Centrality with respect to 

Total Paths per Node (EVCd_TpdN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCud_TSpudN), explaining 41.1, 60.9%, 23.1% and 23.3% 

variation respectively.  

  

Table 12: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.6.7.3 The Consumption Network 

A.6.7.3.1 Correlation Analysis 

Significant correlations coefficients for consumption network are shown below in 

table 13. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

 

Nodes Edges_d

Reciprocit

y Den_d GD_d Tpaths_d

TSpaths_

d AvgPL_d AvgGL_d PL_TpinN S_con

EVCin_Tpi

nN

Pearson Correlation.965
** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.920
**

-.834
** -.070 1

Sig. (2-tailed) .000 .000 .510

N 91 91 91 91

Pearson Correlation.646
**

.610
** .081 -.575

**
.499

** 1

Sig. (2-tailed) .000 .000 .448 .000 .000

N 91 91 91 91 91 91

Pearson Correlation.647
**

.609
** .075 -.576

**
.495

**
1.000

** 1

Sig. (2-tailed) .000 .000 .482 .000 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.363
**

.352
** .153 -.304

**
.604

**
.854

**
.852

** 1

Sig. (2-tailed) .000 .001 .147 .003 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.363
**

.348
** .137 -.308

**
.594

**
.856

**
.855

**
.998

** 1

Sig. (2-tailed) .000 .001 .196 .003 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation-.037 -.011 .013 .027 -.120 -.152 -.153 -.305
**

-.310
**

.882
**

Sig. (2-tailed) .731 .920 .905 .800 .258 .151 .147 .003 .003 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.275
**

.240
* .036 -.294

**
.344

**
.582

**
.582

**
.511

**
.513

** .043 .783
**

Sig. (2-tailed) .008 .022 .734 .005 .001 .000 .000 .000 .000 .682 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.125 .129 .669
** -.115 .157 .174 .166 .235

*
.214

* -.014 -.030

Sig. (2-tailed) .236 .224 .000 .279 .136 .100 .115 .025 .041 .897 .775

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.228
* -.200 -.076 .241

*
-.366

**
-.446

**
-.449

**
-.452

**
-.462

** .133 -.261
*

1.000
**

Sig. (2-tailed) .030 .058 .474 .022 .000 .000 .000 .000 .000 .210 .012 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Correlations

Edges_d

Den_d

PL_TSpin

N

R_con

Tpaths_d

TSpaths_

d

AvgPL_d

AvgGL_d

PL_EVCin

N

EVCin_TS

pinN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table 13: Correlation coefficients of directed network  
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Tables 13 show that nodes (Nodes) and ties (Edges_ud) have a strong positive 

correlation. As the number of nodes increase, the number of ties also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network. Total Paths (Tpaths_d) in the network share a negative correlation with 

Density (Den_d). Total Shortest Paths (TSpaths_d) in the network correlate positively 

with the number of nodes (Nodes), number of ties (Edges_d), Reciprocity and Total 

Paths (Tpaths_d) in the network. Total Shortest Paths (TSpaths_d) in the network share 

a negative correlation with Density (Den_d). Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power 

Law Distribution per Node (PL_TSpinN) correlates positively with Paths Power Law 

Distribution per Node (PL_TpinN). Scale Free Metric (S_con) seems to share a positive 

relationship with Average Geodesic Length (AvgGL_d). Assortativity (R_con) shares a 

positive relationship with Total Paths (Tpaths_d), Total Shortest Paths (TSpaths_d), 

Average Path Length (AvgPL_d), Average Geodesic Length (AvgGL_d) and Scale Free 

Metric (S_con). Small World Metric (SMSP_d) is strongly correlated with Clustering 

Coefficient (CC_d). Eigenvector Centralization (ECin) correlates negatively with Total 

Paths (Tpaths_d), Total Shortest Paths (TSpaths_d). Power Law Distribution of 
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Eigenvector Centrality per Node (PL_EVCinN) shares a positive correlation with 

Reciprocity. Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCin_TSpinN) and Eigenvector Centrality with respect to Total Paths per Node 

(EVCin_TpinN) correlate strongly with each other. 

A.6.7.3.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.6.7.3.2.1 Independent Variables 

 

 

The factor analysis generated two factors that explain 95.374% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalues above one. Factor2 has 

eigenvalue below 1. Nodes and ties (Edges_d) have significant factor loadings in factor 1. 

Figure 22: Factor Analysis of Independent Variables  
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Cronbach’s alpha for factor1 has a value of 0.977. This means Nodes and ties (Edges_d) 

are measuring same construct within factor 1. Factor 1 is named “Size”. 

A.6.7.3.2.2 Network Structure (MV1) 

 

 

 

 

 

Factor analysis generated two factors that explain 91.633% (greater than 80%) of 

cumulative variance. Factor1 and factor 2 have eigenvalues above 1. Assortativity and 

scale free metric have significant factor loadings in factor2. Cronbach’s alpha for factor2 

has a value of 0.046. Assortativity (R_con) and Scale Free Metric (S_d) are not measuring 

same construct within factor2. Hence, they should not be considered as a factor. Paths 

Power Law Distribution per Node (PL_TpinN) and Shortest Paths Power Law Distribution 

per Node (PL_TSpinN) have significant factor loadings in factor1. Cronbach’s alpha for 

factor1 has a value of 0.933. Paths Power Law Distribution per Node (PL_TpinN) and 

Figure 23: Factor Analysis of Network Structure Variables  
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Shortest Paths Power Law Distribution per Node (PL_TSpinN) are measuring same 

construct within factor 2. Hence, they should be considered as a factor. All other 

variables load independently. Factor2 is named as “Distribution”. 

A.6.7.3.2.3 Network Flow (MV2) 

 

 

 

 

Factor analysis generated one factor that explains 81.915% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (Tpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_d) have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a 

value of 0.875. Factor 1 is named as “Spread and Speed”. 

  

Figure 24: Factor Analysis of Network Flow Variables  
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A.6.7.3.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 82.312% (greater than 80%) of 

cumulative variance. Eigenvector Centralities with respect to Paths (EVCin_TpinN) and 

Shortest Paths (EVCin_TSpinN) have significant factor loading on factor 1. Factor 1 has a 

Cronbach’s alpha of 1. I name the factor1 as “Influence” as both, Eigenvector centralities 

with respect to paths and shortest paths, are being used measure of influence.  

  

Figure 25: Factor Analysis of Dependent Variables  
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A.6.7.3.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Science.pdf”. 

A.6.7.3.3.1 Impact of Network Structure on Network Flow 

 

 

 

Table 14 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 28.5%, 55.8%, 54.3%, 48.4% 

and 7.6% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total Shortest 

Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length 

(AvgGL_ud), respectively. The impact of network structure variables on AvgGL_ud is not 

taken into consideration, as the p-value is greater than the Bonferroni-adjusted p-value 

of 0.000694. 

Table 14:  Impact of Network Structure on Network Flow  
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A.6.7.3.3.2 Impact of Network Flow on Network Structure 

 

 

 

 

Table 15 shows that the network flow variables have a significant impact on the 

network structure variables. Network flow variables explain 27%, 26.5%, 36%, 30% and 

8.7% variation in the PL_TpinN, PL_TSpinN, S_con, and R_con, respectively. The impact 

of network flow variables on PL_TpinN and PL_TSpinN are not taken into consideration, 

as their p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 15: Impact of Network Flow on Network Structure 
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A.6.7.3.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

 

Table 16 shows that the network structure variable Eigenvector Centrality with 

respect to Total Paths per Node (EVCin_TpinN) and Eigenvector Centrality with respect 

to Total Shortest Paths per Node (EVCin_TpinN), explaining 16.7% and 16.8% variation 

respectively.  

 

  

Table 16: Impact of Network Structure on Network Phenomenon 
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A.6.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

Table 17 shows that the network structure variable impacts Eigenvector 

Centralization (EC_in), Power Law Distribution of Eigenvector Centrality with respect to 

Nodes (PL_EVCinN), Eigenvector Centrality with respect to Total Paths per Node 

(EVCin_TpinN) and Eigenvector Centrality with respect to Total Shortest Paths per Node 

(EVCin_TSpinN), explaining 3.4%, 27.4% and 10.1% variation respectively. The impact of 

network flow variables on EC_in and PL_EVCinN are not taken into consideration, as 

their respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 17: Impact of Network Flow on Network Phenomenon 
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A.6.7.3.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 18 shows the collective impact of independent and moderating variables 

on the network phenomenon variables. The independent variables and the moderating 

variables collectively impact Eigenvector Centralization (EC_in), Eigenvector Centrality 

with respect to Total Paths per Node (EVCin_TpinN) and Eigenvector Centrality with 

respect to Total Shortest Paths per Node (EVCin_TSpinN), explaining 30.8%, 26.2%, and 

26.2% variation respectively.  

  

Table 18: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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A.6.7.4 The Propagation Network 

A.6.7.4.1 Correlation Analysis 

Significant correlations coefficients for propagation network are shown below in 

table 19. Significant correlations observed are marked in yellow. All correlations 

between all variables are shown in supplemental file titled “Correlations.pdf”. 

 

 

Nodes Edges_d

Reciproc

ity Den_d GD_d

Tpaths_

d

TSpaths

_d AvgPL_d AvgGL_d

PL_Tpou

tN S_pro ECout

EVCout_

TpoutN

Pearson Correlation.965** 1

Sig. (2-tailed) .000

N 91 91

Pearson Correlation-.920** -.834** -.070 1

Sig. (2-tailed) .000 .000 .510

N 91 91 91 91

Pearson Correlation.646** .610** .081 -.575** .499** 1

Sig. (2-tailed) .000 .000 .448 .000 .000

N 91 91 91 91 91 91

Pearson Correlation.647** .609** .075 -.576** .495** 1.000** 1

Sig. (2-tailed) .000 .000 .482 .000 .000 .000

N 91 91 91 91 91 91 91

Pearson Correlation.363** .352** .153 -.304** .604** .854** .852** 1

Sig. (2-tailed) .000 .001 .147 .003 .000 .000 .000

N 91 91 91 91 91 91 91 91

Pearson Correlation.363** .348** .137 -.308** .594** .856** .855** .998** 1

Sig. (2-tailed) .000 .001 .196 .003 .000 .000 .000 .000

N 91 91 91 91 91 91 91 91 91

Pearson Correlation.237* .265* .111 -.226* .227* .131 .129 .190 .185 .689**

Sig. (2-tailed) .024 .011 .295 .031 .031 .214 .223 .071 .080 .000

N 91 91 91 91 91 91 91 91 91 91

Pearson Correlation-.017 .044 .251* .055 .167 .282** .275** .552** .538** .248* 1

Sig. (2-tailed) .871 .680 .016 .606 .115 .007 .008 .000 .000 .018

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.049 .097 .268* -.016 .255* .351** .345** .620** .606** .302** .980**

Sig. (2-tailed) .642 .358 .010 .881 .015 .001 .001 .000 .000 .004 .000

N 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.300** .298** .680** -.272** .262* .406** .403** .375** .367** .232* .173 -.522**

Sig. (2-tailed) .004 .004 .000 .009 .012 .000 .000 .000 .000 .027 .100 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

Pearson Correlation.301** .349** .233* -.203 .051 .276** .275** .242* .239* .128 .031 -.287** .989**

Sig. (2-tailed) .004 .001 .027 .053 .630 .008 .008 .021 .023 .226 .769 .006 .000

N 91 91 91 91 91 91 91 91 91 91 91 91 91

Correlations

Edges_d

Den_d

PL_TSp

outN

S_pro

R_pro

Tpaths_

d

TSpaths

_d

AvgPL_d

AvgGL_d

PL_EVC

outN

EVCout_

TSpoutN

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table 19: Correlation coefficients of directed network  
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Table 19 shows that nodes and ties have a strong positive correlation. As the 

number of nodes (Nodes) increase, the number of ties (Edges_d) also increases. Density 

(Den_d) of this network has a strong negative correlation with both, number of nodes 

(Nodes) and number of ties (Edges_d). Total Paths (Tpaths_d) in the network correlate 

with number of ties (Edges_d), Reciprocity and the Graph Diameter (GD_d) of the 

network.  Total Paths (Tpaths_d) in the network share a negative correlation with 

Density (Den_d). Total Shortest Paths (TSpaths_d) in the network correlate positively 

with the number of nodes (Nodes), number of ties (Edges_d), Reciprocity and Total 

Paths (Tpaths_d) in the network. Total Shortest Paths (TSpaths_d) in the network share 

a negative correlation with Density (Den_d). Average Path Length (AvgPL_d) and 

Average Geodesic Length (AvgGL_d) correlates with Graph Diameter (GD_d), Total Paths 

(Tpaths_d), Total Shortest Paths (TSpaths_d) and with each other. Shortest Paths Power 

Law Distribution per Node (PL_TSpoutN) correlates positively with Paths Power Law 

Distribution per Node (PL_TpoutN). Small World Metric (SMSP_d) is strongly correlated 

with Clustering Coefficient (CC_d). Eigenvector Centralization (ECout) correlates 

negatively Total Paths (Tpaths_d), Total Shortest Paths (TSpaths_d). Power Law 

Distribution of Eigenvector Centrality per Node (PL_EVCoutN) shares a positive 

correlation with Reciprocity. Eigenvector Centrality with respect to Total Shortest Paths 

per Node (EVCout_TSpoutN) and Eigenvector Centrality with respect to Total Paths per 

Node (EVCout_TpoutN)   correlate strongly with each other. 
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A.6.7.4.2 Factor Analysis 

In this section, results of factor analysis are shown. Details of the factor analysis 

are shown in supplemental file titled “Factor Analysis.pdf”. 

A.6.7.4.2.1 Independent Variables 

 

 

The factor analysis generated two factors that explain 95.374% (greater than 

80%) of the cumulative variance. Factor1 has eigenvalues above one. Factor2 has 

eigenvalue below 1. Nodes and ties (Edges_d) have significant factor loadings in factor 1. 

Cronbach’s alpha for factor1 has a value of 0.977. This means Nodes and ties (Edges_d) 

are measuring same construct within factor 1. Factor 1 is named “Size”. 

  

Figure 26: Factor Analysis of Independent Variables  

 



www.manaraa.com

518 
 

 

A.6.7.4.2.2 Network Structure (MV1) 

 

 

 

 

Factor analysis generated two factors that explain 91.976% (greater than 80%) of 

cumulative variance. Factor1 and factor2 have eigenvalues above 1. Assortativity 

(R_pro), Scale Free Metric (S_pro), Paths Power Law Distribution per Node (PL_TpoutN) 

and Shortest Paths Power Law Distribution per Node (PL_TSpoutN) have significant 

factor loadings in factor1. Cronbach’s alpha for factor2 has a value of 0.635. 

Assortativity (R_pro), Scale Free Metric (S_pro), Paths Power Law Distribution per Node 

(PL_TpoutN) and Shortest Paths Power Law Distribution per Node (PL_TSpoutN) are 

measuring same construct within factor1. Factor 1 is named “Structure and 

Distribution”. Paths Power Law Distribution per Node (PL_TpoutN) and Shortest Paths 

Power Law Distribution per Node (PL_TSpoutN) have significant factor loadings in 

factor2. Cronbach’s alpha for factor2 has a value of 0.816. Paths Power Law Distribution 

Figure 27: Factor Analysis of Network Structure Variables  
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per Node (PL_TpoutN) and Shortest Paths Power Law Distribution per Node 

(PL_TSpoutN) are measuring same construct within factor 2. Factor2 is named as 

“Distribution”. 

A.6.7.4.2.3 Network Flow (MV2) 

 

 

 

 

 

Factor analysis generated one factor that explains 81.915% (greater than 80%) of 

cumulative variance. Graph Diameter (GD_d), Total Paths (TSpaths_d), Total Paths 

(TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic Length (AvgGL_d) 

have significant factor loadings in factor 1. Cronbach’s alpha for factor1 has a value of 

0.905. Factor 1 is named as “Spread and Speed”. 

  

Figure 28: Factor Analysis of Network Flow Variables  
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A.6.7.4.2.4 Dependent Variables 

 

 

 

 

Factor analysis generated two factors that explain 87.830% (greater than 80%) of 

cumulative variance. Power Law Distribution of Eigenvector Centrality (PL_EVCoutN), 

Eigenvector Centralities with respect to Paths (EVCout_TpoutN) and Shortest Paths 

(EVCout_TSpoutN) have significant factor loading on factor 1. Factor 1 has a Cronbach’s 

alpha of 0.812. Power Law Distribution of Eigenvector Centrality (PL_EVCoutN), 

Eigenvector Centralities with respect to Paths (EVCout_TpoutN) and Shortest Paths 

(EVCout_TSpoutN) are measuring same construct within factor 1. Factor 1 is named 

“Influence”. 

 

 

  

Figure 29: Factor Analysis of Dependent Variables  
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A.6.7.4.3 Regression Analysis 

In this section, only the impactful regressions in which predictors had a 

significant impact on dependent variables are shown. Detailed regressions are shown in 

supplemental file titled “RegressionAnalysis_Science.pdf”. 

A.6.7.4.3.1 Impact of Network Structure on Network Flow 

 

 

Table 20 shows that network structure variables have a significant impact on 

network flow variables. Network structure variables explain 5.4%, 11.3%, 10.9%, 

37.7% and 36.1% variation in Graph Diameter (GD_d), Total Paths (Tpaths_d), Total 

Shortest Paths (TSpaths_d), Average Path Length (AvgPL_d) and Average Geodesic 

Length (AvgGL_ud), respectively. The impact of network structure variables on 

Graph Diameter (GD_d), Total Paths (Tpaths_d) and Total Shortest Paths 

(TSpaths_d) are not taken into consideration, as the p-value is greater than the 

Bonferroni-adjusted p-value of 0.000694. 

Table 20:  Impact of Network Structure on Network Flow  
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A.6.7.4.3.2 Impact of Network Flow on Network Structure 

 

 

 

Table 21 shows that the network flow variables have a significant impact on 

the network structure variables. Network flow variables explain 4.6%, 4.1%, 29.7%, 

and 37.7% variation in the PL_TpoutN, PL_TSpoutN, S_pro, and R_pro, respectively. 

The impact of network flow variables on PL_TpoutN and PL_TSpoutN are not taken 

into consideration, as the p-values are greater than the Bonferroni-adjusted p-value 

of 0.000694. 

  

Table 21: Impact of Network Flow on Network Structure 
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A.6.7.4.3.3 Impact of Network Structure on Network Phenomenon 

 

 

 

 

Table 22 shows that the network structure variable impacts Eigenvector 

Centralization (ECout) and Powel Law Distribution of Eigenvector Centrality with 

respect to Nodes (PL_EVCoutN, explaining 12.6% and 4.3% variation respectively. 

The impact of network flow variables on Powel Law Distribution of Eigenvector 

Centrality with respect to Nodes (PL_EVCoutN) is not taken into consideration, as 

the p-values is greater than the Bonferroni-adjusted p-value of 0.000694. 

 

 

 

 

  

Table 22: Impact of Network Structure on Network Phenomenon 
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A.6.7.3.3.4 Impact of Network Flow on Network Phenomenon 

 

 

 

 

Table 23 shows that the network structure variable impacts Eigenvector 

Centralization (ECout), Powel Law Distribution of Eigenvector Centrality with 

respect to Nodes (PL_EVCoutN), Eigenvector Centrality with respect to Total Paths 

per Node (EVCout_TpoutN) and Eigenvector Centrality with respect to Total 

Shortest Paths per Node (EVCout_TSpoutN), explaining 9.7%, 15.5%, 6.6% and 6.6% 

variation respectively. The impact of network flow variables on EC_out, 

EVCout_TpoutN and EVCout_TSpoutN are not taken into consideration, as their 

respective p-values are greater than the Bonferroni-adjusted p-value of 0.000694. 

  

Table 23: Impact of Network Flow on Network Phenomenon 
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A.6.7.4.3.5 Collective Impact of Independent Variables, Moderating Variables 

(Network Structure and Network Flow Variables) on the Network Phenomenon 

Variables. 

 

 

Table 24 shows the collective impact of independent and moderating 

variables on the network phenomenon variables. The independent variables and the 

moderating variables collectively impact Eigenvector Centralization (EC_out), 

Power Law Distribution of Eigenvector Centrality per Node (PL_EVCoutN), and 

Eigenvector Centrality with respect to Total Paths per Node (EVCout_TpoutN), 

explaining 30.8%, 57.7%, and 6.5% variation respectively.  

  

Table 24: Collective Impact of Independent Variables, Moderating Variables on the Network 

Phenomenon Variables 
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Appendix B: Supplemental Files 

 

Name Size Software 
Requirement 

Description 

Correlations.pdf 583 
kB 

 Adobe 
Acrobat 
Reader 

Detailed correlations of all 
the variables in Comedy,  
Entertainment, Music, 
Howto, Science and Sports 
product categories 

Daily_Values_Com_con.pdf 241 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Comedy Network in 
Consumption Phase for 91 
days 

Daily_Values_Com_d.pdf 239 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Comedy Network in 
Directed Phase for 91 days 

Daily_Values_Com_pro.pdf 241 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Comedy Network in 
Propagation Phase for 91 
days 

Daily_Values_Com_ud.pdf 236 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Comedy Network in 
Undirected Phase for 91 days 

Daily_Values_Ent_con.pdf 241 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Entertainment Network in 
Consumption Phase for 91 
days 

Daily_Values_Ent_d.pdf 242 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Entertainment in Directed 
Phase for 91 days 

Daily_Values_Ent_pro.pdf 241 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Entertainment Network in 
Propagation Phase for 91 
days 

Daily_Values_Ent_ud.pdf 236 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Entertainment Network in 
Undirected Phase for 91 days 

Daily_Values_Howto_con.pdf 239 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Howto Network in 
Consumption Phase for 91 
days 

Daily_Values_Howto_d.pdf 240 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Howto in Directed Phase 
for 91 days 
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Daily_Values_Howto_pro.pdf 240 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Howto Network in 
Propagation Phase for 91 
days 

Daily_Values_Howto_ud.pdf 234 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Howto Network in 
Undirected Phase for 91 days 

Daily_Values_Mus_con.pdf 245 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Music Network in 
Consumption Phase for 91 
days 

Daily_Values_Mus_d.pdf 244 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Music in Directed Phase 
for 91 days 

Daily_Values_Mus_pro.pdf 245 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Music Network in 
Propagation Phase for 91 
days 

Daily_Values_Mus_ud.pdf 236 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Music Network in 
Undirected Phase for 91 days 

Daily_Values_Sci_con.pdf 240 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Science Network in 
Consumption Phase for 91 
days 

Daily_Values_Sci_d.pdf 241 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Science in Directed Phase 
for 91 days 

Daily_Values_Sci_pro.pdf 240 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Science Network in 
Propagation Phase for 91 
days 

Daily_Values_Sci_ud.pdf 234 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Science Network in 
Undirected Phase for 91 days 

Daily_Values_Spo_con.pdf 242 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Sports Network in 
Consumption Phase for 91 
days 

Daily_Values_Spo_d.pdf 250 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Sports in Directed Phase 
for 91 days 

Daily_Values_Spo_pro.pdf 242 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Sports Network in 
Propagation Phase for 91 
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days 

Daily_Values_Spo_ud.pdf 236 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of all variables 
of Sports Network in 
Undirected Phase for 91 days 

Factor Analysis.pdf 7.1 
MB 

 Adobe 
Acrobat 
Reader 

Detailed Factor Analysis 
output of all the variables in 
Comedy,  Entertainment, 
Music, Science and Sports 
product categories 

Meta Data.pdf 248 
kB 

 Adobe 
Acrobat 
Reader 

Daily values of Meta Data for  
Comedy,  Entertainment, 
Music, Howto, Science and 
Sports product categories for 
91 days 

RegressionAnalysis_Comedy.pdf 11.2 
MB 

 Adobe 
Acrobat 
Reader 

Detailed Regression Analysis 
output of all the variables in 
Comedy product category 

RegressionAnalysis_Entertainment.p
df 

11.1 
MB 

 Adobe 
Acrobat 
Reader 

Detailed Regression Analysis 
output of all the variables in 
Entertainment product 
category 

RegressionAnalysis_Music.pdf 12.1 
MB 

 Adobe 
Acrobat 
Reader 

Detailed Regression Analysis 
output of all the variables in 
Music product category 

RegressionAnalysis_Science.pdf 14.3 
MB 

 Adobe 
Acrobat 
Reader 

Detailed Regression Analysis 
output of all the variables in 
Science product category 

RegressionAnalysis_Sports.pdf 14.6 
MB 

 Adobe 
Acrobat 
Reader 

Detailed Regression Analysis 
output of all the variables in 
Sports product category 
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